Python equivalent to R poly() function?

前端 未结 2 682
花落未央
花落未央 2021-02-15 18:25

I\'m trying to understand how to replicate the poly() function in R using scikit-learn (or other module).

For example, let\'s say I have a vector in R:

a         


        
相关标签:
2条回答
  • 2021-02-15 18:48

    It turns out that you can replicate the result of R's poly(x,p) function by performing a QR decomposition of a matrix whose columns are the powers of the input vector x from the 0th power (all ones) up to the pth power. The Q matrix, minus the first constant column, gives you the result you want.

    So, the following should work:

    import numpy as np
    
    def poly(x, p):
        x = np.array(x)
        X = np.transpose(np.vstack((x**k for k in range(p+1))))
        return np.linalg.qr(X)[0][:,1:]
    

    In particular:

    In [29]: poly([1,2,3,4,5,6,7,8,9,10], 3)
    Out[29]: 
    array([[-0.49543369,  0.52223297,  0.45342519],
           [-0.38533732,  0.17407766, -0.15114173],
           [-0.27524094, -0.08703883, -0.37785433],
           [-0.16514456, -0.26111648, -0.33467098],
           [-0.05504819, -0.34815531, -0.12955006],
           [ 0.05504819, -0.34815531,  0.12955006],
           [ 0.16514456, -0.26111648,  0.33467098],
           [ 0.27524094, -0.08703883,  0.37785433],
           [ 0.38533732,  0.17407766,  0.15114173],
           [ 0.49543369,  0.52223297, -0.45342519]])
    
    In [30]: 
    
    0 讨论(0)
  • 2021-02-15 18:56

    The answer by K. A. Buhr is full and complete.

    The R poly function also calculates interactions of different degrees of the members. That's why I was looking for the R poly equivalent.
    sklearn.preprocessing.PolynomialFeatures Seems to provide such, you can do the np.linalg.qr(X)[0][:,1:] step after to get the orthogonal matrix.

    Something like this:

    import numpy as np
    import pprint
    import sklearn.preprocessing
    PP = pprint.PrettyPrinter(indent=4)
    
    MATRIX = np.array([[ 4,  2],[ 2,  3],[ 7,  4]])
    poly = sklearn.preprocessing.PolynomialFeatures(2)
    PP.pprint(MATRIX)
    X = poly.fit_transform(MATRIX)
    PP.pprint(X)
    

    Results in:

    array([[4, 2],
           [2, 3],
           [7, 4]])
    array([[ 1.,  4.,  2., 16.,  8.,  4.],
           [ 1.,  2.,  3.,  4.,  6.,  9.],
           [ 1.,  7.,  4., 49., 28., 16.]])
    
    0 讨论(0)
提交回复
热议问题