How to do the Bisection method in Python

前端 未结 7 2415
小蘑菇
小蘑菇 2021-02-15 15:05

I want to make a Python program that will run a bisection method to determine the root of:

f(x) = -26 + 85x - 91x2 +44x3 -8x4 + x5

The Bisecti

相关标签:
7条回答
  • 2021-02-15 15:21

    Basic Technique

    Here's some code showing the basic technique:

    >>> def samesign(a, b):
            return a * b > 0
    
    >>> def bisect(func, low, high):
        'Find root of continuous function where f(low) and f(high) have opposite signs'
    
        assert not samesign(func(low), func(high))
    
        for i in range(54):
            midpoint = (low + high) / 2.0
            if samesign(func(low), func(midpoint)):
                low = midpoint
            else:
                high = midpoint
    
        return midpoint
    
    >>> def f(x):
            return -26 + 85*x - 91*x**2 +44*x**3 -8*x**4 + x**5
    
    >>> x = bisect(f, 0, 1)
    >>> print(x, f(x))
    0.557025516287 3.74700270811e-16
    

    Tolerance

    To exit early when a given tolerance is achieved, add a test at the end of the loop:

    def bisect(func, low, high, tolerance=None):
        assert not samesign(func(low), func(high))   
        for i in range(54):
            midpoint = (low + high) / 2.0
            if samesign(func(low), func(midpoint)):
                low = midpoint
            else:
                high = midpoint
            if tolerance is not None and abs(high - low) < tolerance:
                break   
        return midpoint
    
    0 讨论(0)
  • 2021-02-15 15:26

    It is possible to modify the Bisection-method above with a tolerance as the stopper:

    def samesign(a, b):
            return a*b > 0
    
    def bisect(func, low, high):
        assert not samesign(func(low), func(high))
        n = 20
        e = 0.01 # the epsilon or error we justify for tolerance
        for i in range(n):
            if abs(func(low)-func(high)) > e:
                midpoint = (low + high) / 2
                print(i, midpoint, f(midpoint))
                if samesign(func(low), func(midpoint)):
                    low = midpoint
                else:
                    high = midpoint
            else:
                return round(midpoint, 2)
        return round(midpoint, 2)
    
    0 讨论(0)
  • 2021-02-15 15:29

    With tolerance:

    # there is only one root
    def fn(x):
     return x**3 + 5*x - 9
     # define bisection method
    def bisection( eq, segment, app = 0.3 ):
     a, b = segment['a'], segment['b']
     Fa, Fb = eq(a), eq(b)
     if Fa * Fb > 0:
      raise Exception('No change of sign - bisection not possible')   
     while( b - a > app ): 
      x = ( a + b ) / 2.0
      f = eq(x)
      if f * Fa > 0: a = x
      else: b = x  
     return x
     #test it
    print bisection(fn,{'a':0,'b':5}, 0.00003) # => 1.32974624634
    

    Live: http://repl.it/k6q

    0 讨论(0)
  • 2021-02-15 15:34

    My implementation is more generic and yet simpler than the other solutions: (and public domain)

    def solve(func, x = 0.0, step = 1e3, prec = 1e-10):
        """Find a root of func(x) using the bisection method.
    
        The function may be rising or falling, or a boolean expression, as long as
        the end points have differing signs or boolean values.
    
        Examples:
            solve(lambda x: x**3 > 1000) to calculate the cubic root of 1000.
            solve(math.sin, x=6, step=1) to solve sin(x)=0 with x=[6,7).
        """
        test = lambda x: func(x) > 0  # Convert into bool function
        begin, end = test(x), test(x + step)
        assert begin is not end  # func(x) and func(x+step) must be on opposite sides
        while abs(step) > prec:
            step *= 0.5
            if test(x + step) is not end: x += step
        return x
    
    0 讨论(0)
  • 2021-02-15 15:35

    I'm trying to make some modifications :

    1. While loop : the tolerance and the number of iterations performed by the algorithm
    2. save in addition to the root approach, the vector of points generated by the algorithm xn (all c points), the vector of all images f(c)
    3. Assuming Xs is a given approximation of the root, save the absolute error np.linalg.norm(Xs-xn)
    4. Save the approximate error : np.linalg.norm(xn+1 - xn).

    This is my code:

    import numpy as np
    def bisection3(f,x0,x1,tol,max_iter):
        c = (x0+x1)/2.0
        x0 = c
        Xs = 0.3604217029603
        err_Abs = np.linalg.norm(x0-Xs)
        itr = 0
        f_x0 = f(x0)
        f_x1 = f(x1)
        xp = [] # sucesion que converge a la raiz
        errores_Abs = []
        errores_Aprox = []
        fs = [] # esta sucecion debe converger a cero 
        while(((x1-x0)/2.0 > tol) and (itr< max_iter)):
            if f(c) == 0:
                return c
            elif f(x0)*f(c) < 0:
                x1 = c
            else :
                x0 = c
            c = (x0+x1)/2.0    
            itr +=1
            err_Abs = np.linalg.norm(x0-Xs)
            err_Aprox = np.linalg.norm(x1 - x0)
            fs.append(f(c))
            xp.append(c)
            errores_Abs.append(err_Abs)
            errores_Aprox.append(err_Aprox)
        return x0,errores_Abs, errores_Aprox,fs,xp
    

    And i have an example of execution :

    f  = lambda x : 3*x + np.sin(x) - np.exp(x)
    X0_r1 ,  err_Abs_r1,err_Aprox_r1, fs_r1 , xp_r1 =   bisection3(f,0,0.5,1e-5,100)
    
    0 讨论(0)
  • 2021-02-15 15:37
    # Defining Function
    def f(x):
        return x**3-5*x-9
    
    # Implementing Bisection Method
    def bisection(x0,x1,e):
        step = 1
        print('\n\n*** BISECTION METHOD IMPLEMENTATION ***')
        condition = True
        while condition:
            x2 = (x0 + x1)/2
            print('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step, x2, f(x2)))
    
            if f(x0) * f(x2) < 0:
                x1 = x2
            else:
                x0 = x2
    
            step = step + 1
            condition = abs(f(x2)) > e
    
        print('\nRequired Root is : %0.8f' % x2)
    
    
    # Input Section
    x0 = input('First Guess: ')
    x1 = input('Second Guess: ')
    e = input('Tolerable Error: ')
    
    # Converting input to float
    x0 = float(x0)
    x1 = float(x1)
    e = float(e)
    
    #Note: You can combine above two section like this
    # x0 = float(input('First Guess: '))
    # x1 = float(input('Second Guess: '))
    # e = float(input('Tolerable Error: '))
    
    
    # Checking Correctness of initial guess values and bisecting
    if f(x0) * f(x1) > 0.0:
        print('Given guess values do not bracket the root.')
        print('Try Again with different guess values.')
    else:
        bisection(x0,x1,e)
    
    

    Code and Output Here

    Additionally codesansar.com/numerical-methods/ has large collection of algorithms, pseudocodes, and programs using different programming languages for Numerical Analysis.

    0 讨论(0)
提交回复
热议问题