I have the following dataframe:
a a a b c c d e a a b b b e e d d
The required result should be
a b c d e a b e d
Much as I like,... errr, love rle
, here's a shootoff:
EDIT: Can't figure out exactly what's up with dplyr
so I used dplyr::lead
. I'm on OSX, R3.1.2, and latest dplyr
from CRAN.
xlet<-sample(letters,1e5,rep=T)
rleit<-function(x) rle(x)$values
lagit<-function(x) x[x!=lead(x, default=1)]
tailit<-function(x) x[x!=c(tail(x,-1), tail(x,1))]
microbenchmark(rleit(xlet),lagit(xlet),tailit(xlet),times=20)
Unit: milliseconds
expr min lq median uq max neval
rleit(xlet) 27.43996 30.02569 30.20385 30.92817 37.10657 20
lagit(xlet) 12.44794 15.00687 15.14051 15.80254 46.66940 20
tailit(xlet) 12.48968 14.66588 14.78383 15.32276 55.59840 20
library(dplyr)
x <- c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", "b", "b", "e", "e", "d", "d")
x[x!=lag(x, default=1)]
#[1] "a" "b" "c" "d" "e" "a" "b" "e" "d"
EDIT: For data.frame
mydf <- data.frame(
V1 = c("a", "a", "a", "b", "c", "c", "d", "e",
"a", "a", "b", "b", "e", "e", "d", "d"),
V2 = c(1, 2, 3, 2, 4, 1, 3, 9,
4, 8, 10, 199, 2, 5, 4, 10),
stringsAsFactors=FALSE)
dplyr solution is one liner:
mydf %>% filter(V1!= lag(V1, default="1"))
# V1 V2
#1 a 1
#2 b 2
#3 c 4
#4 d 3
#5 e 9
#6 a 4
#7 b 10
#8 e 2
#9 d 4
post scriptum
lead(x,1)
suggested by @Carl Witthoft iterates in reverse order.
leadit<-function(x) x!=lead(x, default="what")
rows <- leadit(mydf[ ,1])
mydf[rows, ]
# V1 V2
#3 a 3
#4 b 2
#6 c 1
#7 d 3
#8 e 9
#10 a 8
#12 b 199
#14 e 5
#16 d 10
One easy way is to use rle
:
Here's your sample data:
x <- scan(what = character(), text = "a a a b c c d e a a b b b e e d d")
# Read 17 items
rle
returns a list
with two values: the run length ("lengths
"), and the value that is repeated for that run ("values
").
rle(x)$values
# [1] "a" "b" "c" "d" "e" "a" "b" "e" "d"
data.frame
If you are working with a data.frame
, try something like the following:
## Sample data
mydf <- data.frame(
V1 = c("a", "a", "a", "b", "c", "c", "d", "e",
"a", "a", "b", "b", "e", "e", "d", "d"),
V2 = c(1, 2, 3, 2, 4, 1, 3, 9,
4, 8, 10, 199, 2, 5, 4, 10)
)
## Use rle, as before
X <- rle(mydf$V1)
## Identify the rows you want to keep
Y <- cumsum(c(1, X$lengths[-length(X$lengths)]))
Y
# [1] 1 4 5 7 8 9 11 13 15
mydf[Y, ]
# V1 V2
# 1 a 1
# 4 b 2
# 5 c 4
# 7 d 3
# 8 e 9
# 9 a 4
# 11 b 10
# 13 e 2
# 15 d 4
The "data.table" package has a function rleid
that lets you do this quite easily. Using mydf
from above, try:
library(data.table)
as.data.table(mydf)[, .SD[1], by = rleid(V1)]
# rleid V2
# 1: 1 1
# 2: 2 2
# 3: 3 4
# 4: 4 3
# 5: 5 9
# 6: 6 4
# 7: 7 10
# 8: 8 2
# 9: 9 4
With base R, I like funny algorithmics:
x <- c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", "b", "b", "e", "e", "d", "d")
x[x!=c(x[-1], FALSE)]
#[1] "a" "b" "c" "d" "e" "a" "b" "e" "d"