Numpy modify array in place?

前端 未结 4 2069
南方客
南方客 2020-11-27 19:09

I have the following code which is attempting to normalize the values of an m x n array (It will be used as input to a neural network, where m is t

相关标签:
4条回答
  • 2020-11-27 19:21

    If you want to apply mathematical operations to a numpy array in-place, you can simply use the standard in-place operators +=, -=, /=, etc. So for example:

    >>> def foo(a):
    ...     a += 10
    ... 
    >>> a = numpy.arange(10)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> foo(a)
    >>> a
    array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
    

    The in-place version of these operations is a tad faster to boot, especially for larger arrays:

    >>> def normalize_inplace(array, imin=-1, imax=1):
    ...         dmin = array.min()
    ...         dmax = array.max()
    ...         array -= dmin
    ...         array *= imax - imin
    ...         array /= dmax - dmin
    ...         array += imin
    ...     
    >>> def normalize_copy(array, imin=-1, imax=1):
    ...         dmin = array.min()
    ...         dmax = array.max()
    ...         return imin + (imax - imin) * (array - dmin) / (dmax - dmin)
    ... 
    >>> a = numpy.arange(10000, dtype='f')
    >>> %timeit normalize_inplace(a)
    10000 loops, best of 3: 144 us per loop
    >>> %timeit normalize_copy(a)
    10000 loops, best of 3: 146 us per loop
    >>> a = numpy.arange(1000000, dtype='f')
    >>> %timeit normalize_inplace(a)
    100 loops, best of 3: 12.8 ms per loop
    >>> %timeit normalize_copy(a)
    100 loops, best of 3: 16.4 ms per loop
    
    0 讨论(0)
  • 2020-11-27 19:26
    def normalize(array, imin = -1, imax = 1):
        """I = Imin + (Imax-Imin)*(D-Dmin)/(Dmax-Dmin)"""
    
        dmin = array.min()
        dmax = array.max()
    
    
        array -= dmin;
        array *= (imax - imin)
        array /= (dmax-dmin)
        array += imin
    
        print array[0]
    
    0 讨论(0)
  • 2020-11-27 19:35

    There is a nice way to do in-place normalization when using numpy. np.vectorize is is very usefull when combined with a lambda function when applied to an array. See the example below:

    import numpy as np
    
    def normalizeMe(value,vmin,vmax):
    
        vnorm = float(value-vmin)/float(vmax-vmin)
    
        return vnorm
    
    imin = 0
    imax = 10
    feature = np.random.randint(10, size=10)
    
    # Vectorize your function (only need to do it once)
    temp = np.vectorize(lambda val: normalizeMe(val,imin,imax)) 
    normfeature = temp(np.asarray(feature))
    
    print feature
    print normfeature
    

    One can compare the performance with a generator expression, however there are likely many other ways to do this.

    %%timeit
    temp = np.vectorize(lambda val: normalizeMe(val,imin,imax)) 
    normfeature1 = temp(np.asarray(feature))
    10000 loops, best of 3: 25.1 µs per loop
    
    
    %%timeit
    normfeature2 = [i for i in (normalizeMe(val,imin,imax) for val in feature)]
    100000 loops, best of 3: 9.69 µs per loop
    
    %%timeit
    normalize(np.asarray(feature))
    100000 loops, best of 3: 12.7 µs per loop
    

    So vectorize is definitely not the fastest, but can be conveient in cases where performance is not as important.

    0 讨论(0)
  • 2020-11-27 19:41

    This is a trick that it is slightly more general than the other useful answers here:

    def normalize(array, imin = -1, imax = 1):
        """I = Imin + (Imax-Imin)*(D-Dmin)/(Dmax-Dmin)"""
    
        dmin = array.min()
        dmax = array.max()
    
        array[...] = imin + (imax - imin)*(array - dmin)/(dmax - dmin)
    

    Here we are assigning values to the view array[...] rather than assigning these values to some new local variable within the scope of the function.

    x = np.arange(5, dtype='float')
    print x
    normalize(x)
    print x
    
    >>> [0. 1. 2. 3. 4.]
    >>> [-1.  -0.5  0.   0.5  1. ]
    

    EDIT:

    It's slower; it allocates a new array. But it may be valuable if you are doing something more complicated where builtin in-place operations are cumbersome or don't suffice.

    def normalize2(array, imin=-1, imax=1):
        dmin = array.min()
        dmax = array.max()
    
        array -= dmin;
        array *= (imax - imin)
        array /= (dmax-dmin)
        array += imin
    
    A = np.random.randn(200**3).reshape([200] * 3)
    %timeit -n5 -r5 normalize(A)
    %timeit -n5 -r5 normalize2(A)
    
    >> 47.6 ms ± 678 µs per loop (mean ± std. dev. of 5 runs, 5 loops each)
    >> 26.1 ms ± 866 µs per loop (mean ± std. dev. of 5 runs, 5 loops each)
    
    0 讨论(0)
提交回复
热议问题