I read data from a csv file ,but don\'t have index.
I want to add a column from 1 to row\'s number.
What should I do,Thanks (scala)
With Scala you can use:
import org.apache.spark.sql.functions._
df.withColumn("id",monotonicallyIncreasingId)
You can refer to this exemple and scala docs.
With Pyspark you can use:
from pyspark.sql.functions import monotonically_increasing_id
df_index = df.select("*").withColumn("id", monotonically_increasing_id())
How to get a sequential id column id[1, 2, 3, 4...n]:
from pyspark.sql.functions import desc, row_number, monotonically_increasing_id
from pyspark.sql.window import Window
df_with_seq_id = df.withColumn('index_column_name', row_number().over(Window.orderBy(monotonically_increasing_id())) - 1)
Note that row_number() starts at 1, therefore subtract by 1 if you want 0-indexed column
As Ram said, zippedwithindex
is better than monotonically increasing id, id you need consecutive row numbers. Try this (PySpark environment):
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, LongType
new_schema = StructType(**original_dataframe**.schema.fields[:] + [StructField("index", LongType(), False)])
zipped_rdd = **original_dataframe**.rdd.zipWithIndex()
indexed = (zipped_rdd.map(lambda ri: row_with_index(*list(ri[0]) + [ri[1]])).toDF(new_schema))
where original_dataframe is the dataframe you have to add index on and row_with_index is the new schema with the column index which you can write as
row_with_index = Row(
"calendar_date"
,"year_week_number"
,"year_period_number"
,"realization"
,"index"
)
Here, calendar_date
, year_week_number
, year_period_number
and realization were the columns of my original dataframe. You can replace the names with the names of your columns. index
is the new column name you had to add for the row numbers.
If you require a unique sequence number for each row, I have a slightly different approach, where a static column is added and is used to compute the row number using that column.
val srcData = spark.read.option("header","true").csv("/FileStore/sample.csv")
srcData.show(5)
+--------+--------------------+
| Job| Name|
+--------+--------------------+
|Morpheus| HR Specialist|
| Kayla| Lawyer|
| Trisha| Bus Driver|
| Robert|Elementary School...|
| Ober| Judge|
+--------+--------------------+
val srcDataModf = srcData.withColumn("sl_no",lit("1"))
val windowSpecRowNum = Window.partitionBy("sl_no").orderBy("sl_no")
srcDataModf.withColumn("row_num",row_number.over(windowSpecRowNum)).drop("sl_no").select("row_num","Name","Job")show(5)
+-------+--------------------+--------+
|row_num| Name| Job|
+-------+--------------------+--------+
| 1| HR Specialist|Morpheus|
| 2| Lawyer| Kayla|
| 3| Bus Driver| Trisha|
| 4|Elementary School...| Robert|
| 5| Judge| Ober|
+-------+--------------------+--------+
For SparkR:
(Assuming sdf is some sort of spark data frame)
sdf<- withColumn(sdf, "row_id", SparkR:::monotonically_increasing_id())
monotonically_increasing_id - The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
"I want to add a column from 1 to row's number."
Let say we have the following DF
+--------+-------------+-------+ | userId | productCode | count | +--------+-------------+-------+ | 25 | 6001 | 2 | | 11 | 5001 | 8 | | 23 | 123 | 5 | +--------+-------------+-------+
To generate the IDs starting from 1
val w = Window.orderBy("count")
val result = df.withColumn("index", row_number().over(w))
This would add an index column ordered by increasing value of count.
+--------+-------------+-------+-------+ | userId | productCode | count | index | +--------+-------------+-------+-------+ | 25 | 6001 | 2 | 1 | | 23 | 123 | 5 | 2 | | 11 | 5001 | 8 | 3 | +--------+-------------+-------+-------+