What´s the best way to do a correlation-matrix plot like this?

后端 未结 1 1756
野趣味
野趣味 2021-02-14 21:11

I used ggpairs to generate this plot: \"enter

And this is the code for it:



        
相关标签:
1条回答
  • 2021-02-14 21:54

    I don't know about being the best way, it's certainly not easier, but this generates three lists of plots: one each for the bar plots, the scatterplots, and the tiles. Using gtable functions, it creates a gtable layout, adds the plots to the layout, and follows up with a bit of fine-tuning.

    EDIT: Add t and p.values to the tiles.

    # Load packages
    library(ggplot2)
    library(plyr)
    library(gtable)
    library(grid)
    
    
    # Generate example data
    dat <- data.frame(replicate(10, sample(1:5, 200, replace = TRUE)))
    dat = dat[, 1:6]
    dat <- as.data.frame(llply(dat, as.numeric))
    
    
    # Number of items, generate labels, and set size of text for correlations and item labels
    n <- dim(dat)[2]
    labels <- paste0("Item ", 1:n)
    sizeItem = 16
    sizeCor = 4
    
    
    ## List of scatterplots
    scatter <- list()
    
    for (i in 2:n) {
       for (j in 1:(i-1)) {
    
    # Data frame 
    df.point <- na.omit(data.frame(cbind(x = dat[ , j], y = dat[ , i])))
    
    # Plot
    p <- ggplot(df.point, aes(x, y)) +
       geom_jitter(size = .7, position = position_jitter(width = .2, height= .2)) +
       stat_smooth(method="lm", colour="black") +
       theme_bw() + theme(panel.grid = element_blank())
    
    name <- paste0("Item", j, i)
    scatter[[name]] <- p
    } }
    
    
    ## List of bar plots
    bar <- list()
    for(i in 1:n) {
    
    # Data frame
    bar.df <- as.data.frame(table(dat[ , i], useNA = "no"))
    names(bar.df) <- c("x", "y")
    
    # Plot
    p <- ggplot(bar.df) + 
       geom_bar(aes(x = x, y = y), stat = "identity", width = 0.6) +
       theme_bw() +  theme(panel.grid = element_blank()) +
       ylim(0, max(bar.df$y*1.05)) 
    
    name <- paste0("Item", i)
    bar[[name]] <- p
    }
    
    
    ## List of tiles
    tile <- list()
    
    for (i in 1:(n-1)) {
       for (j in (i+1):n) {
    
    # Data frame 
    df.point <- na.omit(data.frame(cbind(x = dat[ , j], y = dat[ , i])))
    
    x = df.point[, 1]
    y = df.point[, 2]
    correlation = cor.test(x, y)
    cor <- data.frame(estimate = correlation$estimate,
                      statistic = correlation$statistic,
                      p.value = correlation$p.value)
    cor$cor = paste0("r = ", sprintf("%.2f", cor$estimate), "\n", 
                     "t = ", sprintf("%.2f", cor$statistic), "\n",
                     "p = ", sprintf("%.3f", cor$p.value))
    
    
    # Plot
    p <- ggplot(cor, aes(x = 1, y = 1)) +
      geom_tile(fill = "steelblue") +
      geom_text(aes(x = 1, y = 1, label = cor),
         colour = "White", size = sizeCor, show_guide = FALSE) +
      theme_bw() + theme(panel.grid = element_blank()) 
    
    name <- paste0("Item", j, i)
    tile[[name]] <- p
    } }
    
    
    # Convert the ggplots to grobs, 
    # and select only the plot panels
    barGrob <- llply(bar, ggplotGrob)
    barGrob <- llply(barGrob, gtable_filter, "panel")
    
    scatterGrob <- llply(scatter, ggplotGrob)
    scatterGrob <- llply(scatterGrob, gtable_filter, "panel")
    
    tileGrob <- llply(tile, ggplotGrob)
    tileGrob <- llply(tileGrob, gtable_filter, "panel")
    
    
    ## Set up the gtable layout
    gt <- gtable(unit(rep(1, n), "null"), unit(rep(1, n), "null"))
    
    
    ## Add the plots to the layout
    # Bar plots along the diagonal
    for(i in 1:n) {
    gt <- gtable_add_grob(gt, barGrob[[i]], t=i, l=i)
    }
    
    # Scatterplots in the lower half
    k <- 1
    for (i in 2:n) {
       for (j in 1:(i-1)) {
    gt <- gtable_add_grob(gt, scatterGrob[[k]], t=i, l=j)
    k <- k+1
    } }
    
    # Tiles in the upper half
    k <- 1
    for (i in 1:(n-1)) {
       for (j in (i+1):n) {
    gt <- gtable_add_grob(gt, tileGrob[[k]], t=i, l=j)
    k <- k+1
    } }
    
    
    # Add item labels
    gt <- gtable_add_cols(gt, unit(1.5, "lines"), 0)
    gt <- gtable_add_rows(gt, unit(1.5, "lines"), 2*n)
    
    for(i in 1:n) {
    textGrob <- textGrob(labels[i], gp = gpar(fontsize = sizeItem)) 
    gt <- gtable_add_grob(gt, textGrob, t=n+1, l=i+1)
    }
    
    for(i in 1:n) {
    textGrob <- textGrob(labels[i], rot = 90, gp = gpar(fontsize = sizeItem)) 
    gt <- gtable_add_grob(gt, textGrob, t=i, l=1)
    }
    
    
    # Add small gap between the panels
    for(i in n:1) gt <- gtable_add_cols(gt, unit(0.2, "lines"), i)
    for(i in (n-1):1) gt <- gtable_add_rows(gt, unit(0.2, "lines"), i)
    
    
    # Add chart title
    gt <- gtable_add_rows(gt, unit(1.5, "lines"), 0)
    textGrob <- textGrob("Korrelationsmatrix", gp = gpar(fontface = "bold", fontsize = 16)) 
    gt <- gtable_add_grob(gt, textGrob, t=1, l=3, r=2*n+1)
    
    
    # Add margins to the whole plot
    for(i in c(2*n+1, 0)) {
    gt <- gtable_add_cols(gt, unit(.75, "lines"), i)
    gt <- gtable_add_rows(gt, unit(.75, "lines"), i)
    }
    
    
    # Draw it
    grid.newpage()
    grid.draw(gt)
    

    enter image description here

    0 讨论(0)
提交回复
热议问题