I have the following code:
import numpy as np
from scipy.optimize import curve_fit
def func(x, p): return p[0] + p[1] + x
popt, pcov = curve_fit(func, np.ara
Not sure if this is cleaner, but at least it is easier now to add more parameters to the fitting function. Maybe one could even make an even better solution out of this.
import numpy as np
from scipy.optimize import curve_fit
def func(x, p): return p[0] + p[1] * x
def func2(*args):
return func(args[0],args[1:])
popt, pcov = curve_fit(func2, np.arange(10), np.arange(10), p0=(0, 0))
print popt,pcov
EDIT: This works for me
import numpy as np
from scipy.optimize import curve_fit
def func(x, *p): return p[0] + p[1] * x
popt, pcov = curve_fit(func, np.arange(10), np.arange(10), p0=(0, 0))
print popt,pcov
You can define functions that return other functions (see Passing additional arguments using scipy.optimize.curve_fit? )
Working example :
import numpy as np
import random
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt
import math
def funToFit(x):
return 0.5+2*x-3*x*x+0.2*x*x*x+0.1*x*x*x*x
xx=[random.uniform(1,5) for i in range(30)]
yy=[funToFit(xx[i])+random.uniform(-1,1) for i in range(len(xx))]
a=np.zeros(5)
def make_func(numarg):
def func(x,*a):
ng=numarg
v=0
for i in range(ng):
v+=a[i]*np.power(x,i)
return v
return func
leastsq, covar = curve_fit(make_func(len(a)),xx,yy,tuple(a))
print leastsq
def fFited(x):
v=0
for i in range(len(leastsq)):
v+=leastsq[i]*np.power(x,i)
return v
xfine=np.linspace(1,5,200)
plt.plot(xx,yy,".")
plt.plot(xfine,fFited(xfine))
plt.show()
scipy.optimize.curve_fit
scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)
Use non-linear least squares to fit a function, f, to data. Assumes ydata = f(xdata, *params) + eps
The function to be fitted should take only scalars (not: *p0
).
Remember that the result of the fit depends on the initialization parameters.
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def func(x, a0, a1):
return a0 + a1 * x
x, y = np.arange(10), np.arange(10) + np.random.randn(10)/10
popt, pcov = curve_fit(func, x, y, p0=(1, 1))
# Plot the results
plt.title('Fit parameters:\n a0=%.2e a1=%.2e' % (popt[0], popt[1]))
# Data
plt.plot(x, y, 'rx')
# Fitted function
x_fine = np.linspace(x[0], x[-1], 100)
plt.plot(x_fine, func(x_fine, popt[0], popt[1]), 'b-')
plt.savefig('Linear_fit.png')
plt.show()
When using curve_fit
you must explicitly say the number of fit parameters. Doing something like:
def f(x, *p):
return sum( [p[i]*x**i for i in range(len(p))] )
would be great, since it would be a general nth-order polynomial fitting function, but unfortunately, in my SciPy 0.12.0, it raises:
ValueError: Unable to determine number of fit parameters.
So you should do:
def f_1(x, p0, p1):
return p0 + p1*x
def f_2(x, p0, p1, p2):
return p0 + p1*x + p2*x**2
and so forth...
Then you can call using the p0
argument:
curve_fit(f_1, xdata, ydata, p0=(0,0))