Pass tuple as input argument for scipy.optimize.curve_fit

后端 未结 4 1719
刺人心
刺人心 2021-02-14 20:21

I have the following code:

import numpy as np
from scipy.optimize import curve_fit


def func(x, p): return p[0] + p[1] + x


popt, pcov = curve_fit(func, np.ara         


        
相关标签:
4条回答
  • 2021-02-14 20:38

    Not sure if this is cleaner, but at least it is easier now to add more parameters to the fitting function. Maybe one could even make an even better solution out of this.

    import numpy as np
    from scipy.optimize import curve_fit
    
    
    def func(x, p): return p[0] + p[1] * x
    
    def func2(*args):
        return func(args[0],args[1:])
    
    popt, pcov = curve_fit(func2, np.arange(10), np.arange(10), p0=(0, 0))
    print popt,pcov
    

    EDIT: This works for me

    import numpy as np
    from scipy.optimize import curve_fit
    
    def func(x, *p): return p[0] + p[1] * x
    
    popt, pcov = curve_fit(func, np.arange(10), np.arange(10), p0=(0, 0))
    print popt,pcov
    
    0 讨论(0)
  • 2021-02-14 20:41

    You can define functions that return other functions (see Passing additional arguments using scipy.optimize.curve_fit? )

    Working example :

    import numpy as np
    import random
    from scipy.optimize import curve_fit
    from matplotlib import pyplot as plt
    import math
    
    def funToFit(x):
        return 0.5+2*x-3*x*x+0.2*x*x*x+0.1*x*x*x*x
    
    
    xx=[random.uniform(1,5) for i in range(30)]
    yy=[funToFit(xx[i])+random.uniform(-1,1) for i in range(len(xx))]
    
    
    a=np.zeros(5)
    def make_func(numarg):
        def func(x,*a):
            ng=numarg
            v=0
            for i in range(ng):
                v+=a[i]*np.power(x,i)
            return v
        return func
    
    leastsq, covar = curve_fit(make_func(len(a)),xx,yy,tuple(a))
    print leastsq
    def fFited(x):
        v=0
        for i in range(len(leastsq)):
            v+=leastsq[i]*np.power(x,i)
        return v
    
    
    xfine=np.linspace(1,5,200)
    plt.plot(xx,yy,".")
    plt.plot(xfine,fFited(xfine))
    plt.show()
    
    0 讨论(0)
  • 2021-02-14 20:52

    scipy.optimize.curve_fit

    scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)

    Use non-linear least squares to fit a function, f, to data.
    
    Assumes ydata = f(xdata, *params) + eps
    

    Explaining the idea

    The function to be fitted should take only scalars (not: *p0). Remember that the result of the fit depends on the initialization parameters.

    Working example

    import numpy as np
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt
    
    def func(x, a0, a1):
        return a0 + a1 * x
    
    x, y = np.arange(10), np.arange(10) + np.random.randn(10)/10
    popt, pcov = curve_fit(func, x, y, p0=(1, 1))
    
    # Plot the results
    plt.title('Fit parameters:\n a0=%.2e a1=%.2e' % (popt[0], popt[1]))
    # Data
    plt.plot(x, y, 'rx')
    # Fitted function
    x_fine = np.linspace(x[0], x[-1], 100)
    plt.plot(x_fine, func(x_fine, popt[0], popt[1]), 'b-')
    plt.savefig('Linear_fit.png')
    plt.show()
    

    0 讨论(0)
  • Problem

    When using curve_fit you must explicitly say the number of fit parameters. Doing something like:

    def f(x, *p):
        return sum( [p[i]*x**i for i in range(len(p))] )
    

    would be great, since it would be a general nth-order polynomial fitting function, but unfortunately, in my SciPy 0.12.0, it raises:

    ValueError: Unable to determine number of fit parameters.
    

    Solution

    So you should do:

    def f_1(x, p0, p1):
        return p0 + p1*x
    
    def f_2(x, p0, p1, p2):
        return p0 + p1*x + p2*x**2
    

    and so forth...

    Then you can call using the p0 argument:

    curve_fit(f_1, xdata, ydata, p0=(0,0))
    
    0 讨论(0)
提交回复
热议问题