Given the following:
df = pd.DataFrame({\'col1\' : [\"a\",\"b\"],
\'col2\' : [\"ab\",np.nan], \'col3\' : [\"w\",\"e\"]})
I would l
In [1556]: df.apply(lambda x: '*'.join(x.dropna().astype(str).values), axis=1)
Out[1556]:
0 a*ab*w
1 b*e
2 3*4*�
3 ñ*ü*á
dtype: object
df.apply(lambda row: '*'.join(row.dropna()), axis=1)
In [68]:
df['new_col'] = df.apply(lambda x: '*'.join(x.dropna().values.tolist()), axis=1)
df
Out[68]:
col1 col2 col3 new_col
0 a ab w a*ab*w
1 b NaN e b*e
UPDATE
If you have ints or float you can convert these to str
first:
In [74]:
df = pd.DataFrame({'col1' : ["a","b",3],
'col2' : ["ab",np.nan, 4], 'col3' : ["w","e", 6]})
df
Out[74]:
col1 col2 col3
0 a ab w
1 b NaN e
2 3 4 6
In [76]:
df['new_col'] = df.apply(lambda x: '*'.join(x.dropna().astype(str).values), axis=1)
df
Out[76]:
col1 col2 col3 new_col
0 a ab w a*ab*w
1 b NaN e b*e
2 3 4 6 3*4*6
Another update
In [81]:
df = pd.DataFrame({'col1' : ["a","b",3,'ñ'],
'col2' : ["ab",np.nan, 4,'ü'], 'col3' : ["w","e", 6,'á']})
df
Out[81]:
col1 col2 col3
0 a ab w
1 b NaN e
2 3 4 6
3 ñ ü á
In [82]:
df['new_col'] = df.apply(lambda x: '*'.join(x.dropna().astype(str).values), axis=1)
df
Out[82]:
col1 col2 col3 new_col
0 a ab w a*ab*w
1 b NaN e b*e
2 3 4 6 3*4*6
3 ñ ü á ñ*ü*á
My code still works with Spanish characters
You can use dropna()
df['col4'] = df.apply(lambda row: '*'.join(row.dropna()), axis=1)
UPDATE:
Since, you need to convert numbers and special chars too, you can use astype(unicode)
In [37]: df = pd.DataFrame({'col1': ["a", "b"], 'col2': ["ab", np.nan], "col3": [3, u'\xf3']})
In [38]: df.apply(lambda row: '*'.join(row.dropna().astype(unicode)), axis=1)
Out[38]:
0 a*ab*3
1 b*ó
dtype: object
In [39]: df['col4'] = df.apply(lambda row: '*'.join(row.dropna().astype(unicode)), axis=1)
In [40]: df
Out[40]:
col1 col2 col3 col4
0 a ab 3 a*ab*3
1 b NaN ó b*ó
for row in xrange(len(df)):
s = '*'.join(df.ix[row].dropna().tolist())
print s