Set values on the diagonal of pandas.DataFrame

后端 未结 5 2129
日久生厌
日久生厌 2020-11-27 17:56

I have a pandas dataframe I would like to se the diagonal to 0

import numpy
import pandas

df = pandas.DataFrame(numpy.random.rand(5,5))
df

Out[6]:
     0           


        
相关标签:
5条回答
  • 2020-11-27 18:23

    This solution is vectorized and very fast and unless the other suggested solution works for any column names and size of df matrix.

    def pd_fill_diagonal(df_matrix, value=0): 
        mat = df_matrix.values
        n = mat.shape[0]
        mat[range(n), range(n)] = value
        return pd.DataFrame(mat)
    

    Performance on Dataframe of 507 columns and rows

    % timeit pd_fill_diagonal(df, 0)
    

    1000 loops, best of 3: 145 µs per loop

    0 讨论(0)
  • 2020-11-27 18:29

    Here is a hack that worked for me:

    def set_diag(self, values): 
        n = min(len(self.index), len(self.columns))
        self.values[[np.arange(n)] * 2] = values
    pd.DataFrame.set_diag = set_diag
    
    x = pd.DataFrame(np.random.randn(10, 5))
    x.set_diag(0)
    
    0 讨论(0)
  • 2020-11-27 18:33
    In [21]: df.values[[np.arange(df.shape[0])]*2] = 0
    
    In [22]: df
    Out[22]: 
              0         1         2         3         4
    0  0.000000  0.931374  0.604412  0.863842  0.280339
    1  0.531528  0.000000  0.641094  0.204686  0.997020
    2  0.137725  0.037867  0.000000  0.983432  0.458053
    3  0.594542  0.943542  0.826738  0.000000  0.753240
    4  0.357736  0.689262  0.014773  0.446046  0.000000
    

    Note that this will only work if df has the same number of rows as columns. Another way which will work for arbitrary shapes is to use np.fill_diagonal:

    In [36]: np.fill_diagonal(df.values, 0)
    
    0 讨论(0)
  • 2020-11-27 18:35

    Using np.fill_diagonal(df.values, 1) Is the easiest, but you need to make sure your columns all have the same data type I had a mixture of np.float64 and python floats and it would only effect the numpy values. to fix you have to cast everything to numpy.

    0 讨论(0)
  • 2020-11-27 18:38

    Both approaches in unutbu's answer assume that labels are irrelevant (they operate on the underlying values).

    The OP code works with .loc and so is label based instead (i.e. put a 0 on cells in row-column with same labels, rather than in cells located on the diagonal - admittedly, this is irrelevant in the specific example given, in which labels are just positions).

    Being in need of the "label-based" diagonal filling (working with a DataFrame describing an incomplete adjacency matrix), the simplest approach I could come up with was:

    def pd_fill_diagonal(df, value):
        idces = df.index.intersection(df.columns)
        stacked = df.stack(dropna=False)
        stacked.update(pd.Series(value,
                                 index=pd.MultiIndex.from_arrays([idces,
                                                                  idces])))
        df.loc[:, :] = stacked.unstack()
    
    0 讨论(0)
提交回复
热议问题