I have code like this:
class RetInterface {...}
class Ret1: public RetInterface {...}
class AInterface
{
public:
virtual boost::shared_ptr
Here is my attempt :
template<class T>
class Child : public T
{
public:
typedef T Parent;
};
template<typename _T>
class has_parent
{
private:
typedef char One;
typedef struct { char array[2]; } Two;
template<typename _C>
static One test(typename _C::Parent *);
template<typename _C>
static Two test(...);
public:
enum { value = (sizeof(test<_T>(nullptr)) == sizeof(One)) };
};
class A
{
public :
virtual void print() = 0;
};
class B : public Child<A>
{
public:
void print() override
{
printf("toto \n");
}
};
template<class T, bool hasParent = has_parent<T>::value>
class ICovariantSharedPtr;
template<class T>
class ICovariantSharedPtr<T, true> : public ICovariantSharedPtr<typename T::Parent>
{
public:
T * get() override = 0;
};
template<class T>
class ICovariantSharedPtr<T, false>
{
public:
virtual T * get() = 0;
};
template<class T>
class CovariantSharedPtr : public ICovariantSharedPtr<T>
{
public:
CovariantSharedPtr(){}
CovariantSharedPtr(std::shared_ptr<T> a_ptr) : m_ptr(std::move(a_ptr)){}
T * get() final
{
return m_ptr.get();
}
private:
std::shared_ptr<T> m_ptr;
};
And a little example :
class UseA
{
public:
virtual ICovariantSharedPtr<A> & GetPtr() = 0;
};
class UseB : public UseA
{
public:
CovariantSharedPtr<B> & GetPtr() final
{
return m_ptrB;
}
private:
CovariantSharedPtr<B> m_ptrB = std::make_shared<B>();
};
int _tmain(int argc, _TCHAR* argv[])
{
UseB b;
UseA & a = b;
a.GetPtr().get()->print();
}
Explanations :
This solution implies meta-progamming and to modify the classes used in covariant smart pointers.
The simple template struct Child
is here to bind the type Parent
and inheritance. Any class inheriting from Child<T>
will inherit from T
and define T
as Parent
. The classes used in covariant smart pointers needs this type to be defined.
The class has_parent
is used to detect at compile time if a class defines the type Parent
or not. This part is not mine, I used the same code as to detect if a method exists (see here)
As we want covariance with smart pointers, we want our smart pointers to mimic the existing class architecture. It's easier to explain how it works in the example.
When a CovariantSharedPtr<B>
is defined, it inherits from ICovariantSharedPtr<B>
, which is interpreted as ICovariantSharedPtr<B, has_parent<B>::value>
. As B
inherits from Child<A>
, has_parent<B>::value
is true, so ICovariantSharedPtr<B>
is ICovariantSharedPtr<B, true>
and inherits from ICovariantSharedPtr<B::Parent>
which is ICovariantSharedPtr<A>
. As A
has no Parent
defined, has_parent<A>::value
is false, ICovariantSharedPtr<A>
is ICovariantSharedPtr<A, false>
and inherits from nothing.
The main point is as B
inherits from A
, we have ICovariantSharedPtr<B>
inheriting from ICovariantSharedPtr<A>
. So any method returning a pointer or a reference on ICovariantSharedPtr<A>
can be overloaded by a method returning the same on ICovariantSharedPtr<B>
.
maybe you could use an out parameter to get around "covariance with returned boost shared_ptrs.
void get_r_to(boost::shared_ptr<RetInterface>& ) ...
since I suspect a caller can drop in a more refined shared_ptr type as argument.
There is a neat solution posted in this blog post (from Raoul Borges)
An excerpt of the bit prior to adding support for mulitple inheritance and abstract methods is:
template <typename Derived, typename Base>
class clone_inherit<Derived, Base> : public Base
{
public:
std::unique_ptr<Derived> clone() const
{
return std::unique_ptr<Derived>(static_cast<Derived *>(this->clone_impl()));
}
private:
virtual clone_inherit * clone_impl() const override
{
return new Derived(*this);
}
};
class concrete: public clone_inherit<concrete, cloneable>
{
};
int main()
{
std::unique_ptr<concrete> c = std::make_unique<concrete>();
std::unique_ptr<concrete> cc = b->clone();
cloneable * p = c.get();
std::unique_ptr<clonable> pp = p->clone();
}
I would encourage reading the full article. Its simply written and well explained.
What about this solution:
template<typename Derived, typename Base>
class SharedCovariant : public shared_ptr<Base>
{
public:
typedef Base BaseOf;
SharedCovariant(shared_ptr<Base> & container) :
shared_ptr<Base>(container)
{
}
shared_ptr<Derived> operator ->()
{
return boost::dynamic_pointer_cast<Derived>(*this);
}
};
e.g:
struct A {};
struct B : A {};
struct Test
{
shared_ptr<A> get() {return a_; }
shared_ptr<A> a_;
};
typedef SharedCovariant<B,A> SharedBFromA;
struct TestDerived : Test
{
SharedBFromA get() { return a_; }
};
You can't change return types (for non-pointer, non-reference return types) when overloading methods in C++. A1::get_r
must return a boost::shared_ptr<RetInterface>
.
Anthony Williams has a nice comprehensive answer.
Mr Fooz answered part 1 of your question. Part 2, it works this way because the compiler doesn't know if it will be calling AInterface::get_r or A1::get_r at compile time - it needs to know what return value it's going to get, so it insists on both methods returning the same type. This is part of the C++ specification.
For the workaround, if A1::get_r returns a pointer to RetInterface, the virtual methods in RetInterface will still work as expected, and the proper object will be deleted when the pointer is destroyed. There's no need for different return types.