I am new to hadoop. I followed the maichel-noll tutorial to set up hadoop in single node.I tried running WordCount program. This is the code I used:
import java.
You are using package in your class. So your command should be
bin/hadoop jar wc.jar org.myorg.WordCount /home/hduser/gutenberg /home/hduser/gutenberg-output/sample.txt
The answer of Kishore, allowed me to go in the right direction, if it’s possible i want to confirm this, reporting what I did about an experiiment with java code on moltiplication of sparse matrix :
1) Source code (downloaded from https://github.com/marufaytekin/MatrixMultiply/tree/master/src/main/java/com/lendap/hadoop), and saved in /home/hduser/playground/src/matrixMult
2) Downloaded datasets (matrix M and N from https://github.com/marufaytekin/MatrixMultiply/tree/master/input), and then saved in HDFS, with the following path : /user/hduser/inMatrix
3) Compilation with hadoop classes, with creation of java Classes in playground/classes5 : javac -classpath $HADOOP_HOME/share/hadoop/common/lib/activation-1.1.jar:$HADOOP_HOME/share/hadoop/common/hadoop-common-2.7.1.jar:/usr/hadoop/hadoop-2.7.1/share/hadoop/mapreduce/* -d playground/classes5 playground/src/matrixMult/*
4) Creation of jar file MatrixMultiply.jar with the following command : jar -cvf playground/MatrixMultiply.jar -C playground/classes5/ .
5) hadoop mapReduce command (from the $HADOOP_HOME path, that in my case is /usr/hadoop/hadoop-2.7.1$ hadoop jar /home/hduser/playground/MatrixMultiply.jar com.lendap.hadoop.MatrixMultiply /user/hduser/inMatrix/ outputMatrix
6) Correct execution of mapreduce job on my 4 nodes cluster. Here, part of the final output :
0,375,890.0 0,376,1005.0 0,377,1377.0 0,378,604.0 0,379,924.0 0,38,476.0 0,380,621.0 0,381,730.0
990,225,542.0 990,226,639.0 990,227,466.0 990,228,406.0 990,229,343.0 990,23,397.0 990,230,794.0
I think you made a mistake here :
/usr/local/hadoop$ bin/hadoop jar wc.jar WordCount /home/hduser/gutenberg /home/hduser/gutenberg-output/sample.txt
please change it to :
/usr/local/hadoop$ bin/hadoop jar wc.jar org.myorg.WordCount /home/hduser/gutenberg /home/hduser/gutenberg-output/sample.txt
that should work.
@Aswin Alagappan : Reason is a jar file cotains your path in it. JVM cannot find your class in the jar file becase it is in the "jar\org\myorg" path. Understand?
try explicitly including the nested classes(i.e. TokenizerMapper
and IntSumReducer
) in you jar file. Here is how I did it:
jar cvf WordCount.jar WordCount.class WordCount\$TokenizerMapper.class WordCount\$IntSumReducer.class
This may sound crazy. I added package org.myorg;
to my code and compiled it again. I placed the class files in org/myorg folder and created the jar file using them. Then I ran using the jar wc.jar org.myorg.WordCount
command and it got executed successfully. It would be nice if someone could explain me how it actually ran :D . Any way, thanks a lot for helping me guys.
try this,
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WordCount {
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
value.set(tokenizer.nextToken());
output.collect(value, new IntWritable(1));
}
}
}
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
then run command
bin/hadoop jar WordCount.jar WordCount /hdfs_Input_filename /output_filename
if your code is in particular package then you have to mention package name with class name
bin/hadoop jar WordCount.jar PakageName.WordCount /hdfs_Input_filename /output_filename