python OpenCV - add alpha channel to RGB image

前端 未结 4 1385
闹比i
闹比i 2020-11-27 17:22

What is the best way to convert RGB image to RGBA in python using opencv?

Let\'s say I have one array with shape

(185, 198, 3) - it is RGB

相关标签:
4条回答
  • 2020-11-27 17:30

    You may use cv2.merge() to add the alpha channel to the given RGB image, but first you need to split the RGB image to R, G and B channels, as per the documentation:

    Python: cv2.merge(mv[, dst])

    • mv – input array or vector of matrices to be merged; all the matrices in mv must have the same size and the same depth.

    And this can be done as:

    b_channel, g_channel, r_channel = cv2.split(img)
    
    alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 50 #creating a dummy alpha channel image.
    
    img_BGRA = cv2.merge((b_channel, g_channel, r_channel, alpha_channel))
    
    0 讨论(0)
  • 2020-11-27 17:32

    With opencv3, this should work:

    Python

    # First create the image with alpha channel
    rgba = cv2.cvtColor(rgb_data, cv2.COLOR_RGB2RGBA)
    
    # Then assign the mask to the last channel of the image
    rgba[:, :, 3] = alpha_data
    

    C++

    # First create the image with alpha channel
    cv::cvtColor(rgb_data, rgba , cv::COLOR_RGB2RGBA);
    
    # Split the image for access to alpha channel
    std::vector<cv::Mat>channels(4);
    cv::split(rgba, channels);
    
    # Assign the mask to the last channel of the image
    channels[3] = alpha_data;
    
    # Finally concat channels for rgba image
    cv::merge(channels, 4, rgba);
    
    0 讨论(0)
  • 2020-11-27 17:48

    Since OpenCV images are just Numpy arrays, you can do this in one-line, nice and fast with Numpy. So here is the setup code:

    import numpy as np
    
    # We'll synthesise a random image and a separate alpha channel full of 128 - semitransparent
    im    = np.random.randint(0,256,(480,640,3), dtype=np.uint8)
    alpha = np.full((480,640), 128, dtype=np.uint8)
    

    And here is the solution which is simply to stack the alpha channel onto the image in the "depth" axis, hence dstack():

    result = np.dstack((im, alpha))
    
    0 讨论(0)
  • 2020-11-27 17:54

    Here is an another simple example using Grabcut, it helps to get the right order of channels when saving the image on disk vs pyplot.

    from matplotlib import pyplot as plt
    import numpy as np
    import cv2
    
    img = cv2.imread('image.jpg')
    
    mask = np.zeros(img.shape[:2], np.uint8)
    bgdModel = np.zeros((1,65), np.float64)
    fgdModel = np.zeros((1,65), np.float64)
    rect = (50, 50, 450, 290)
    
    # Grabcut 
    cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
    
    r_channel, g_channel, b_channel = cv2.split(img) 
    a_channel = np.where((mask==2)|(mask==0), 0, 255).astype('uint8')  
    
    img_RGBA = cv2.merge((r_channel, g_channel, b_channel, a_channel))
    cv2.imwrite("test.png", img_RGBA)
    
    # Now for plot correct colors : 
    img_BGRA = cv2.merge((b_channel, g_channel, r_channel, a_channel))
    
    plt.imshow(img_BGRA), plt.colorbar(),plt.show()
    
    0 讨论(0)
提交回复
热议问题