For example, if I want to read the middle value from magic(5)
, I can do so like this:
M = magic(5);
value = M(3,3);
to get
To complement Amro's answer, you can use feval
instead of builtin
. There is no difference, really, unless you try to overload the operator function:
BUILTIN(...) is the same as FEVAL(...) except that it will call the original built-in version of the function even if an overloaded one exists (for this to work, you must never overload BUILTIN).
>> feval('_paren', magic(5), 3, 3) % M(3,3)
ans =
13
>> feval('_brace', num2cell(magic(5)), 3, 3) % C{3,3}
ans =
13
What's interesting is that feval
seems to be just a tiny bit quicker than builtin
(by ~3.5%), at least in Matlab 2013b, which is weird given that feval
needs to check if the function is overloaded, unlike builtin
:
>> tic; for i=1:1e6, feval('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 49.904117 seconds.
>> tic; for i=1:1e6, builtin('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 51.485339 seconds.
It could be more simple if you make a new function:
function [ element ] = getElem( matrix, index1, index2 )
element = matrix(index1, index2);
end
and then use it:
value = getElem(magic(5), 3, 3);
There was just good blog post on Loren on the Art of Matlab a couple days ago with a couple gems that might help. In particular, using helper functions like:
paren = @(x, varargin) x(varargin{:});
curly = @(x, varargin) x{varargin{:}};
where paren()
can be used like
paren(magic(5), 3, 3);
would return
ans = 16
I would also surmise that this will be faster than gnovice's answer, but I haven't checked (Use the profiler!!!). That being said, you also have to include these function definitions somewhere. I personally have made them independent functions in my path, because they are super useful.
These functions and others are now available in the Functional Programming Constructs add-on which is available through the MATLAB Add-On Explorer or on the File Exchange.
How do you feel about using undocumented features:
>> builtin('_paren', magic(5), 3, 3) %# M(3,3)
ans =
13
or for cell arrays:
>> builtin('_brace', num2cell(magic(5)), 3, 3) %# C{3,3}
ans =
13
Just like magic :)
Bad news, the above hack doesn't work anymore in R2015b! That's fine, it was undocumented functionality and we cannot rely on it as a supported feature :)
For those wondering where to find this type of thing, look in the folder fullfile(matlabroot,'bin','registry')
. There's a bunch of XML files there that list all kinds of goodies. Be warned that calling some of these functions directly can easily crash your MATLAB session.
unfortunately syntax like magic(5)(3,3)
is not supported by matlab. you need to use temporary intermediate variables. you can free up the memory after use, e.g.
tmp = magic(3);
myVar = tmp(3,3);
clear tmp
Note that if you compare running times with the standard way (asign the result and then access entries), they are exactly the same.
subs=@(M,i,j) M(i,j);
>> for nit=1:10;tic;subs(magic(100),1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0103
>> for nit=1:10,tic;M=magic(100); M(1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0101
To my opinion, the bottom line is : MATLAB does not have pointers, you have to live with it.