I\'ve been looking into using planned contrasts as opposed to post-hoc t-tests. I typically use ezANOVA
(Type III ANOVA) but it seems that conducting planned contra
The emmeans
package provides the appropriate functionality to calculate custom contrasts/arbitrary linear functions of the estimates marginal means (EMMs) for aov
and aovlist
objects (see here for a full list of supported models).
In the following I use the ANT
data set which comes with the ez
package.
First we set up a mixed factorial ANOVA using ezANOVA
. Note that one needs to set orthogonal contrasts in order to get meaningful Type-III tests (see, e.g., John Fox' answer here).
library("ez")
library("emmeans")
# set orthogonal contrasts
options(contrasts = c("contr.sum", "contr.poly"))
data(ANT)
rt_anova <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within = .(cue, flank),
between = group,
type = 3,
return_aov = TRUE)
We can then calculate the EMMs for, say all group-flank combinations.
emm <- emmeans(rt_anova$aov, ~ group * flank)
emm
## group flank emmean SE df lower.CL upper.CL
## Control Neutral 381.5546 1.735392 53.97 378.0753 385.0339
## Treatment Neutral 379.9286 1.735392 53.97 376.4493 383.4079
## Control Congruent 381.6363 1.735392 53.97 378.1570 385.1155
## Treatment Congruent 379.7520 1.735392 53.97 376.2727 383.2313
## Control Incongruent 466.6770 1.735392 53.97 463.1977 470.1563
## Treatment Incongruent 452.2352 1.735392 53.97 448.7559 455.7145
Now it is easy to calculate all pairwise comparisons or any desired contrast on these EMMs.
See also this book chapter and my answer here if you need a bit more detail on how one can derive the contrasts weights from the hypotheses.
# all pairwise comparisons
pairs(emm, adjust = "Holm")
## contrast estimate SE df t.ratio p.value
## Control,Neutral - Treatment,Neutral 1.62594836 2.454215 53.97 0.663 1.0000
## Control,Neutral - Control,Congruent -0.08167403 2.473955 36.00 -0.033 1.0000
## Control,Neutral - Treatment,Congruent 1.80259257 2.454215 53.97 0.734 1.0000
## Control,Neutral - Control,Incongruent -85.12239797 2.473955 36.00 -34.407 <.0001
## Control,Neutral - Treatment,Incongruent -70.68062093 2.454215 53.97 -28.800 <.0001
## Treatment,Neutral - Control,Congruent -1.70762239 2.454215 53.97 -0.696 1.0000
## Treatment,Neutral - Treatment,Congruent 0.17664421 2.473955 36.00 0.071 1.0000
## Treatment,Neutral - Control,Incongruent -86.74834633 2.454215 53.97 -35.347 <.0001
## Treatment,Neutral - Treatment,Incongruent -72.30656929 2.473955 36.00 -29.227 <.0001
## Control,Congruent - Treatment,Congruent 1.88426660 2.454215 53.97 0.768 1.0000
## Control,Congruent - Control,Incongruent -85.04072394 2.473955 36.00 -34.374 <.0001
## Control,Congruent - Treatment,Incongruent -70.59894690 2.454215 53.97 -28.766 <.0001
## Treatment,Congruent - Control,Incongruent -86.92499054 2.454215 53.97 -35.419 <.0001
## Treatment,Congruent - Treatment,Incongruent -72.48321351 2.473955 36.00 -29.299 <.0001
## Control,Incongruent - Treatment,Incongruent 14.44177704 2.454215 53.97 5.884 <.0001
##
## Results are averaged over the levels of: cue
## P value adjustment: holm method for 15 tests
# custom contrasts
contrast(
emm,
list(c1 = c(1, -1, 0, 0, 0, 0), # reproduces first pairwise comparison
# emmean of row 1 - (emmean of row 1 + emmean of row 2) / 2; see EMMs table
# 381.5546 - (379.9286 + 381.6363) / 2
c2 = c(1, -0.5, -0.5, 0, 0, 0))
)
## contrast estimate SE df t.ratio p.value
## c1 1.6259484 2.454215 53.97 0.663 0.5105
## c2 0.7721372 2.136825 43.84 0.361 0.7196
The same applies for purely within-subjects ANOVAs or between-subjects ANOVAs.
# within-subjects ANOVA
rt_anova_wi <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within = .(cue, flank),
type = 3,
return_aov = TRUE)
emm <- emmeans(rt_anova_wi$aov, ~ cue * flank)
contrast(
emm,
list(c1 = c(1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c2 = c(1, -0.5, -0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0))
)
## contrast estimate SE df t.ratio p.value
## c1 47.31005 3.802857 170.34 12.441 <.0001
## c2 50.35320 3.293371 170.34 15.289 <.0001
# between-subjects ANOVA
rt_anova_bw <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within_full = .(cue, flank),
between = group,
type = 3,
return_aov = TRUE)
emm_bw <- emmeans(rt_anova_bw$aov, ~ group)
# custom linear function
contrast(
emm_bw,
list(c1 = c(2/3, 1/2))
)
## contrast estimate SE df t.ratio p.value
## c1 475.2899 0.8213448 18 578.673 <.0001