I am trying to detect all the squared shaped dice images so that i can crop them individually and use that for OCR. Below is the Original image:
Here is the co
That extra piece of information is absolutely golden. Yes, given the 5x5 matrix of dice, you can nail the positions quite well. The dice you can identify give you the center, size, and orientation of the dice. Simply continue those patterns along both axes. For your second pass, increase the contrast in each "region of interest" where you expect to find the edge of a douse (never say die!). You know within a few pixels where the edges will be: simply attenuate the image until you identify those edges.
Here's an approach
Sharpen image with cv2.filter2D()
. We use a generic sharpen kernel, other kernels can be found here
Now threshold to get a binary image
Perform morphological operations
From here we find contours and filter using cv2.contourArea()
with minimum/maximum threshold areas.
We can crop each desired square region using Numpy slicing and save each ROI like this
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+h]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
import cv2
import numpy as np
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 5)
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpen = cv2.filter2D(blur, -1, sharpen_kernel)
thresh = cv2.threshold(sharpen,160,255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
min_area = 100
max_area = 1500
image_number = 0
for c in cnts:
area = cv2.contourArea(c)
if area > min_area and area < max_area:
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+h]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
image_number += 1
cv2.imshow('sharpen', sharpen)
cv2.imshow('close', close)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()