Say I have a sorted list of strings as in:
[\'A\', \'B\' , \'B1\', \'B11\', \'B2\', \'B21\', \'B22\', \'C\', \'C1\', \'C11\', \'C2\']
Now I wan
Most of the answers focused on the B's while I needed a more general solution as noted. Here's one:
def _order_by_number(items):
regex = re.compile(u'(.*?)(\d*)$') # pass a regex in for generality
keys = {k: regex.match(k) for k in items}
keys = {k: (v.groups()[0], int(v.groups()[1] or 0))
for k, v in keys.iteritems()}
items.sort(key=keys.__getitem__)
I am still looking for a magic key however that would leave stuff in place
You can use the natsort module:
>>> from natsort import natsorted
>>>
>>> a = ['A', 'B' , 'B1', 'B11', 'B2', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
>>> natsorted(a)
['A', 'B', 'B1', 'B2', 'B11', 'B21', 'B22', 'C', 'C1', 'C2', 'C11']
If I'm understanding your question clear, you are trying to sort an array by two attributes; the alphabet and the trailing 'number'.
You could just do something like
data = ['A', 'B' , 'B1', 'B11', 'B2', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
data.sort(key=lambda elem: (elem[0], int(elem[1:]))
but since this would throw an exception for elements without a number trailing them, we can go ahead and just make a function (we shouldn't be using lambda anyways!)
def sortKey(elem):
try:
attribute = (elem[0], int(elem[1:]))
except:
attribute = (elem[0], 0)
return attribute
With this sorting key function made, we can sort the element in place by
data.sort(key=sortKey)
Also, you could just go ahead and adjust the sortKey function to give priority to certain alphabets if you wanted to.
import numpy as np
def sort_with_prefix(list, prefix):
alist = np.array(list)
ix = np.where([l.startswith(prefix) for l in list])
alist[ix] = [prefix + str(n or '')
for n in np.sort([int(l.split(prefix)[-1] or 0)
for l in alist[ix]])]
return alist.tolist()
For example:
l = ['A', 'B', 'B1', 'B2', 'B11', 'B21', 'B22', 'C', 'C1', 'C2', 'C11']
print(sort_with_prefix(l, 'B'))
>> ['A', 'B', 'B1', 'B2', 'B11', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
If you want to sort an arbitrary subset of elements while leaving other elements in place, it can be useful to design a view over the original list. The idea of a view in general is that it's like a lens over the original list, but modifying it will manipulate the underlying original list. Consider this helper class:
class SubList:
def __init__(self, items, predicate):
self.items = items
self.indexes = [i for i in range(len(items)) if predicate(items[i])]
@property
def values(self):
return [self.items[i] for i in self.indexes]
def sort(self, key):
for i, v in zip(self.indexes, sorted(self.values, key=key)):
self.items[i] = v
The constructor saves the original list in self.items
, and the original indexes in self.indexes
, as determined by predicate
. In your examples, the predicate
function can be this:
def predicate(item):
return item.startswith('B')
Then, the values
property is the lens over the original list,
returning a list of values picked from the original list by the original indexes.
Finally, the sort
function uses self.values
to sort,
and then modifies the original list.
Consider this demo with doctests:
def demo(values):
"""
>>> demo(['X', 'b3', 'a', 'b1', 'b2'])
['X', 'b1', 'a', 'b2', 'b3']
"""
def predicate(item):
return item.startswith('b')
sub = SubList(values, predicate)
def key(item):
return int(item[1:])
sub.sort(key)
return values
Notice how SubList
is used only as a tool through which to manipulate the input values
. After the sub.sort
call, values
is modified, with elements to sort selected by the predicate
function, and sorted according to the key
function, and all other elements never moved.
Using this SubList
helper with appropriate predicate
and key
functions,
you can sort arbitrary selection of elements of a list.
If you wish to sort with different rules for different subgroups you may use tuples as sorting keys. In this case items would be grouped and sorted layer by layer: first by first tuple item, next in each subgroup by second tuple item and so on. This allows us to have different sorting rules in different subgroups. The only limit - items should be comparable within each group. For example, you cannot have int
and str
type keys in the same subgroup, but you can have them in different subgroups.
Lets try to apply it to the task. We will prepare tuples with elements types (str
, int
) for B elements, and tuples with (str
, str
) for all others.
def sorter(elem):
letter, num = elem[0], elem[1:]
if letter == 'B':
return letter, int(num or 0) # hack - if we've got `''` as num, replace it with `0`
else:
return letter, num
data = ['A', 'B' , 'B1', 'B11', 'B2', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
sorted(data, key=sorter)
# returns
['A', 'B', 'B1', 'B2', 'B11', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
UPDATE
If you prefer it in one line:
data = ['A', 'B' , 'B1', 'B11', 'B2', 'B21', 'B22', 'C', 'C1', 'C11', 'C2']
sorted(data, key=lambda elem: (elem[0], int(elem[1:] or 0) if elem[0]=='B' else elem[:1]
# result
['A', 'B', 'B1', 'B2', 'B11', 'B21', 'B22', 'C', 'C1', 'C2', 'C11']
Anyway these key functions are quite simple, so you can adopt them to real needs.