Time Wheel in python3 pandas

前端 未结 2 1296
清歌不尽
清歌不尽 2021-02-13 10:07

How can I create a timewheel similar to below with logon/logoff event times? Specifically looking to correlate mean login/logoff time correlated to the day of the week in a time

相关标签:
2条回答
  • 2021-02-13 10:48

    Basically, you need to do 2 disjoint tasks:

    • create a frequency table you are going to visualize
    • define a function to visualize a given table

    For the first task, I assume you need just a pivot table with weekdays and hours. I generate a random one:

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import matplotlib as mpl
    import matplotlib.cm as cm
    import calendar
    
    # generate the table with timestamps
    np.random.seed(1)
    times = pd.Series(pd.to_datetime("Nov 1 '16 at 0:42") + pd.to_timedelta(np.random.rand(10000)*60*24*40, unit='m'))
    # generate counts of each (weekday, hour)
    data = pd.crosstab(times.dt.weekday, times.dt.hour.apply(lambda x: '{:02d}:00'.format(x))).fillna(0)
    data.index = [calendar.day_name[i][0:3] for i in data.index]
    print(data.T)
    

    It looks like this. Each number is a counter of logins at this time:

           Mon  Tue  Wed  Thu  Fri  Sat  Sun
    col_0                                   
    00:00   55   56   67   60   60   62   45
    01:00   51   65   70   65   60   59   40
    02:00   47   76   67   68   61   63   51
    ....
    

    Now, let's draw the wheel for this table! It will consist of multiple pie charts:

    # make a heatmap building function 
    def pie_heatmap(table, cmap=cm.hot, vmin=None, vmax=None,inner_r=0.25, pie_args={}):
        n, m = table.shape
        vmin= table.min().min() if vmin is None else vmin
        vmax= table.max().max() if vmax is None else vmax
    
        centre_circle = plt.Circle((0,0),inner_r,edgecolor='black',facecolor='white',fill=True,linewidth=0.25)
        plt.gcf().gca().add_artist(centre_circle)
        norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
        cmapper = cm.ScalarMappable(norm=norm, cmap=cmap)
        for i, (row_name, row) in enumerate(table.iterrows()):
            labels = None if i > 0 else table.columns
            wedges = plt.pie([1] * m,radius=inner_r+float(n-i)/n, colors=[cmapper.to_rgba(x) for x in row.values], 
                labels=labels, startangle=90, counterclock=False, wedgeprops={'linewidth':-1}, **pie_args)
            plt.setp(wedges[0], edgecolor='white',linewidth=1.5)
            wedges = plt.pie([1], radius=inner_r+float(n-i-1)/n, colors=['w'], labels=[row_name], startangle=-90, wedgeprops={'linewidth':0})
            plt.setp(wedges[0], edgecolor='white',linewidth=1.5)
    
    
    
    plt.figure(figsize=(8,8))
    pie_heatmap(data, vmin=-20,vmax=80,inner_r=0.2)
    
    plt.show();
    

    I hope this helps you.

    0 讨论(0)
  • 2021-02-13 11:03

    Taking the data generation from @DavidDale's answer, one may plot a pcolormesh plot of the table on a polar axes. This would directly give the desired plot.

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import calendar
    
    # generate the table with timestamps
    np.random.seed(1)
    times = pd.Series(pd.to_datetime("Nov 1 '16 at 0:42") + 
                      pd.to_timedelta(np.random.rand(10000)*60*24*40, unit='m'))
    # generate counts of each (weekday, hour)
    data = pd.crosstab(times.dt.weekday, 
                       times.dt.hour.apply(lambda x: '{:02d}:00'.format(x))).fillna(0)
    data.index = [calendar.day_name[i][0:3] for i in data.index]
    data = data.T
    
    # produce polar plot
    fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
    ax.set_theta_zero_location("N")
    ax.set_theta_direction(-1)
    
    # plot data
    theta, r = np.meshgrid(np.linspace(0,2*np.pi,len(data)+1),np.arange(len(data.columns)+1))
    ax.pcolormesh(theta,r,data.T.values, cmap="Reds")
    
    # set ticklabels
    pos,step = np.linspace(0,2*np.pi,len(data),endpoint=False, retstep=True)
    pos += step/2.
    ax.set_xticks(pos)
    ax.set_xticklabels(data.index)
    
    ax.set_yticks(np.arange(len(data.columns)))
    ax.set_yticklabels(data.columns)
    plt.show()
    

    0 讨论(0)
提交回复
热议问题