I am trying to read a large csv file into R. I only want to read and work with some of the rows that fulfil a particular condition (e.g. Variable2 >= 3
). Thi
You can read the file in chunks, process each chunk, and then stitch only the subsets together.
Here is a minimal example assuming the file has 1001 (incl. the header) lines and only 100 will fit into memory. The data has 3 columns, and we expect at most 150 rows to meet the condition (this is needed to pre-allocate the space for the final data:
# initialize empty data.frame (150 x 3)
max.rows <- 150
final.df <- data.frame(Variable1=rep(NA, max.rows=150),
Variable2=NA,
Variable3=NA)
# read the first chunk outside the loop
temp <- read.csv('big_file.csv', nrows=100, stringsAsFactors=FALSE)
temp <- temp[temp$Variable2 >= 3, ] ## subset to useful columns
final.df[1:nrow(temp), ] <- temp ## add to the data
last.row = nrow(temp) ## keep track of row index, incl. header
for (i in 1:9){ ## nine chunks remaining to be read
temp <- read.csv('big_file.csv', skip=i*100+1, nrow=100, header=FALSE,
stringsAsFactors=FALSE)
temp <- temp[temp$Variable2 >= 3, ]
final.df[(last.row+1):(last.row+nrow(temp)), ] <- temp
last.row <- last.row + nrow(temp) ## increment the current count
}
final.df <- final.df[1:last.row, ] ## only keep filled rows
rm(temp) ## remove last chunk to free memory
Edit: Added stringsAsFactors=FALSE
option on @lucacerone's suggestion in the comments.
I was looking into readr::read_csv_chunked
when I saw this question and thought I would do some benchmarking. For this example, read_csv_chunked
does well and increasing the chunk size was beneficial. sqldf
was only marginally faster than awk
.
library(tidyverse)
library(sqldf)
library(data.table)
library(microbenchmark)
# Generate an example dataset with two numeric columns and 5 million rows
tibble(
norm = rnorm(5e6, mean = 5000, sd = 1000),
unif = runif(5e6, min = 0, max = 10000)
) %>%
write_csv('medium.csv')
microbenchmark(
readr = read_csv_chunked('medium.csv', callback = DataFrameCallback$new(function(x, pos) subset(x, unif > 9000)), col_types = 'dd', progress = F),
readr2 = read_csv_chunked('medium.csv', callback = DataFrameCallback$new(function(x, pos) subset(x, unif > 9000)), col_types = 'dd', progress = F, chunk_size = 1000000),
sqldf = read.csv.sql('medium.csv', sql = 'select * from file where unif > 9000', eol = '\n'),
awk = read.csv(pipe("awk 'BEGIN {FS=\",\"} {if ($2 > 9000) print $0}' medium.csv")),
awk2 = read_csv(pipe("awk 'BEGIN {FS=\",\"} {if ($2 > 9000) print $0}' medium.csv"), col_types = 'dd', progress = F),
fread = fread(cmd = "awk 'BEGIN {FS=\",\"} {if ($2 > 9000) print $0}' medium.csv"),
check = function(values) all(sapply(values[-1], function(x) all.equal(values[[1]], x))),
times = 10L
)
# Updated 2020-05-29
# Unit: seconds
# expr min lq mean median uq max neval
# readr 2.6 2.7 3.1 3.1 3.5 4.0 10
# readr2 2.3 2.3 2.4 2.4 2.6 2.7 10
# sqldf 14.1 14.1 14.7 14.3 15.2 16.0 10
# awk 18.2 18.3 18.7 18.5 19.3 19.6 10
# awk2 18.1 18.2 18.6 18.4 19.1 19.4 10
# fread 17.9 18.0 18.2 18.1 18.2 18.8 10
# R version 3.6.2 (2019-12-12)
# macOS Mojave 10.14.6
# data.table 1.12.8
# readr 1.3.1
# sqldf 0.4-11
You can open the file in read mode using the function file
(e.g. file("mydata.csv", open = "r")
).
You can read the file one line at a time using the function readLines
with option n = 1
, l = readLines(fc, n = 1)
.
Then you have to parse your string using function such as strsplit
, regular expressions, or you can try the package stringr
(available from CRAN).
If the line met the conditions to import the data, you import it.
To summarize I would do something like this:
df = data.frame(var1=character(), var2=int(), stringsAsFactors = FALSE)
fc = file("myfile.csv", open = "r")
i = 0
while(length( (l <- readLines(fc, n = 1) ) > 0 )){ # note the parenthesis surrounding l <- readLines..
##parse l here: and check whether you need to import the data.
if (need_to_add_data){
i=i+1
df[i,] = #list of data to import
}
}
By far the easiest (in my book) is to use pre-processing.
R> DF <- data.frame(n=1:26, l=LETTERS)
R> write.csv(DF, file="/tmp/data.csv", row.names=FALSE)
R> read.csv(pipe("awk 'BEGIN {FS=\",\"} {if ($1 > 20) print $0}' /tmp/data.csv"),
+ header=FALSE)
V1 V2
1 21 U
2 22 V
3 23 W
4 24 X
5 25 Y
6 26 Z
R>
Here we use awk
. We tell awk
to use a comma as a field separator, and then use the conditon 'if first field greater than 20' to decide if we print (the whole line via $0
).
The output from that command can be read by R via pipe()
.
This is going to be faster and more memory-efficient than reading everythinb into R.
You could use the read.csv.sql
function in the sqldf
package and filter using SQL select. From the help page of read.csv.sql
:
library(sqldf)
write.csv(iris, "iris.csv", quote = FALSE, row.names = FALSE)
iris2 <- read.csv.sql("iris.csv",
sql = "select * from file where `Sepal.Length` > 5", eol = "\n")