I\'m using AWS Athena to query raw data from S3. Since Athena writes the query output into S3 output bucket I used to do:
df = pd.read_csv(OutputLocation)
Maybe you can try to use pandas read_sql and pyathena:
from pyathena import connect
import pandas as pd
conn = connect(s3_staging_dir='s3://bucket/folder',region_name='region')
df = pd.read_sql('select * from database.table', conn) #don't change the "database.table"
A very simple solution is to use a list comprehension with the boto3 Athena paginator. The list comprehension can then be simply passed into the pd.DataFrame()
to create a DataFrame as such,
pd.DataFrame([[data.get('VarCharValue') for data in row['Data']] for row in
results['ResultSet']['Rows']])
import pandas as pd
import boto3
result = get_query_results( . . . ) # your code here
def cleanQueryResult(result) :
'''
This will take the dictionary of the raw Boto3 Athena results and turn it into a
2D array for further processing
Parameters
----------
result dict
The dictionary from the boto3 Athena client function get_query_results
Returns
-------
list(list())
2D list which is essentially the table result. The first row is the column name.
'''
return [[data.get('VarCharValue') for data in row['Data']]
for row in result['ResultSet']['Rows']]
# note that row 1 is the header
df = pd.DataFrame(cleanQueryResult(result))
This requires a the paginator object, https://boto3.amazonaws.com/v1/documentation/api/1.9.42/reference/services/athena.html#paginators
As a hint, here's how you can append after each page
df.append(pd.DataFrame(cleanQueryResult(next_page), ignore_index = True))
Try this approach to convert response['records'] into dataframe using columnMetadata:
def results_to_df(response):
columns = [
col['label']
for col in response['columnMetadata']
]
listed_results = [[list(col.values())[0] if list(col.values())[0] else '' for col in
record] for record in response['records']]
df = pd.DataFrame(listed_results, columns=columns)
return df
I have a solution for my first question, using the following function
def results_to_df(results):
columns = [
col['Label']
for col in results['ResultSet']['ResultSetMetadata']['ColumnInfo']
]
listed_results = []
for res in results['ResultSet']['Rows'][1:]:
values = []
for field in res['Data']:
try:
values.append(list(field.values())[0])
except:
values.append(list(' '))
listed_results.append(
dict(zip(columns, values))
)
return listed_results
and then:
t = results_to_df(response)
pd.DataFrame(t)
As for my 2nd question and to the request of @EricBellet I'm also adding my approach for pagination which I find as inefficient and longer in compare to loading the results from Athena output in S3:
def run_query(query, database, s3_output):
'''
Function for executing Athena queries and return the query ID
'''
client = boto3.client('athena')
response = client.start_query_execution(
QueryString=query,
QueryExecutionContext={
'Database': database
},
ResultConfiguration={
'OutputLocation': s3_output,
}
)
print('Execution ID: ' + response['QueryExecutionId'])
return response
def format_result(results):
'''
This function format the results toward append in the needed format.
'''
columns = [
col['Label']
for col in results['ResultSet']['ResultSetMetadata']['ColumnInfo']
]
formatted_results = []
for result in results['ResultSet']['Rows'][0:]:
values = []
for field in result['Data']:
try:
values.append(list(field.values())[0])
except:
values.append(list(' '))
formatted_results.append(
dict(zip(columns, values))
)
return formatted_results
res = run_query(query_2, database, s3_ouput) #query Athena
import sys
import boto3
marker = None
formatted_results = []
query_id = res['QueryExecutionId']
i = 0
start_time = time.time()
while True:
paginator = client.get_paginator('get_query_results')
response_iterator = paginator.paginate(
QueryExecutionId=query_id,
PaginationConfig={
'MaxItems': 1000,
'PageSize': 1000,
'StartingToken': marker})
for page in response_iterator:
i = i + 1
format_page = format_result(page)
if i == 1:
formatted_results = pd.DataFrame(format_page)
elif i > 1:
formatted_results = formatted_results.append(pd.DataFrame(format_page))
try:
marker = page['NextToken']
except KeyError:
break
print ("My program took", time.time() - start_time, "to run")
It's not formatted so good but I think it does the job...
get_query_results only returns 1000 rows. How can I use it to get two million rows into a Pandas dataframe?
If you try to add:
client.get_query_results(QueryExecutionId=res['QueryExecutionId'], MaxResults=2000)
You will obtain the next error:
An error occurred (InvalidRequestException) when calling the GetQueryResults operation: MaxResults is more than maximum allowed length 1000.
You can obtain millions of rows if you obtain the file directly from your bucket s3 (in the next example into a Pandas Dataframe):
def obtain_data_from_s3(self):
self.resource = boto3.resource('s3',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.resource \
.Bucket(self.bucket) \
.Object(key= self.folder + self.filename + '.csv') \
.get()
return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')
The self.filename can be:
self.filename = response['QueryExecutionId'] + ".csv"
Because Athena names the files as the QueryExecutionId. I will write you all my code that takes a query and return a dataframe with all the rows and columns.
import time
import boto3
import pandas as pd
import io
class QueryAthena:
def __init__(self, query, database):
self.database = database
self.folder = 'my_folder/'
self.bucket = 'my_bucket'
self.s3_input = 's3://' + self.bucket + '/my_folder_input'
self.s3_output = 's3://' + self.bucket + '/' + self.folder
self.region_name = 'us-east-1'
self.aws_access_key_id = "my_aws_access_key_id"
self.aws_secret_access_key = "my_aws_secret_access_key"
self.query = query
def load_conf(self, q):
try:
self.client = boto3.client('athena',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.client.start_query_execution(
QueryString = q,
QueryExecutionContext={
'Database': self.database
},
ResultConfiguration={
'OutputLocation': self.s3_output,
}
)
self.filename = response['QueryExecutionId']
print('Execution ID: ' + response['QueryExecutionId'])
except Exception as e:
print(e)
return response
def run_query(self):
queries = [self.query]
for q in queries:
res = self.load_conf(q)
try:
query_status = None
while query_status == 'QUEUED' or query_status == 'RUNNING' or query_status is None:
query_status = self.client.get_query_execution(QueryExecutionId=res["QueryExecutionId"])['QueryExecution']['Status']['State']
print(query_status)
if query_status == 'FAILED' or query_status == 'CANCELLED':
raise Exception('Athena query with the string "{}" failed or was cancelled'.format(self.query))
time.sleep(10)
print('Query "{}" finished.'.format(self.query))
df = self.obtain_data()
return df
except Exception as e:
print(e)
def obtain_data(self):
try:
self.resource = boto3.resource('s3',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.resource \
.Bucket(self.bucket) \
.Object(key= self.folder + self.filename + '.csv') \
.get()
return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')
except Exception as e:
print(e)
if __name__ == "__main__":
query = "SELECT * FROM bucket.folder"
qa = QueryAthena(query=query, database='myAthenaDb')
dataframe = qa.run_query()