How to Create Dataframe from AWS Athena using Boto3 get_query_results method

前端 未结 5 2186
广开言路
广开言路 2021-02-13 05:37

I\'m using AWS Athena to query raw data from S3. Since Athena writes the query output into S3 output bucket I used to do:

df = pd.read_csv(OutputLocation)


        
相关标签:
5条回答
  • 2021-02-13 06:19

    Maybe you can try to use pandas read_sql and pyathena:

    from pyathena import connect
    import pandas as pd
    
    conn = connect(s3_staging_dir='s3://bucket/folder',region_name='region')
    df = pd.read_sql('select * from database.table', conn) #don't change the "database.table"
    
    0 讨论(0)
  • 2021-02-13 06:23

    A very simple solution is to use a list comprehension with the boto3 Athena paginator. The list comprehension can then be simply passed into the pd.DataFrame() to create a DataFrame as such,

    pd.DataFrame([[data.get('VarCharValue') for data in row['Data']] for row in
                  results['ResultSet']['Rows']])
    

    Boto3 Athena to Pandas DataFrame

    import pandas as pd
    import boto3
    
    result = get_query_results( . . . ) # your code here
    
    def cleanQueryResult(result) :
        '''
        This will take the dictionary of the raw Boto3 Athena results and turn it into a 
        2D array for further processing
    
        Parameters
        ----------
        result dict
            The dictionary from the boto3 Athena client function get_query_results
    
        Returns
        -------
        list(list())
            2D list which is essentially the table result. The first row is the column name.
        '''
        return [[data.get('VarCharValue') for data in row['Data']]
                for row in result['ResultSet']['Rows']]
    
    # note that row 1 is the header
    df = pd.DataFrame(cleanQueryResult(result))
    
    

    Millions of Results

    This requires a the paginator object, https://boto3.amazonaws.com/v1/documentation/api/1.9.42/reference/services/athena.html#paginators

    As a hint, here's how you can append after each page

    df.append(pd.DataFrame(cleanQueryResult(next_page), ignore_index = True))
    
    0 讨论(0)
  • 2021-02-13 06:31

    Try this approach to convert response['records'] into dataframe using columnMetadata:

    def results_to_df(response):
        columns = [
            col['label']
            for col in response['columnMetadata']
        ]
    
        listed_results = [[list(col.values())[0] if list(col.values())[0] else '' for col in 
        record] for record in response['records']]
        df = pd.DataFrame(listed_results, columns=columns)
        return df
    
    0 讨论(0)
  • 2021-02-13 06:35

    I have a solution for my first question, using the following function

    def results_to_df(results):
    
        columns = [
            col['Label']
            for col in results['ResultSet']['ResultSetMetadata']['ColumnInfo']
        ]
    
        listed_results = []
        for res in results['ResultSet']['Rows'][1:]:
             values = []
             for field in res['Data']:
                try:
                    values.append(list(field.values())[0]) 
                except:
                    values.append(list(' '))
    
            listed_results.append(
                dict(zip(columns, values))
            )
    
        return listed_results
    

    and then:

    t = results_to_df(response)
    pd.DataFrame(t)
    

    As for my 2nd question and to the request of @EricBellet I'm also adding my approach for pagination which I find as inefficient and longer in compare to loading the results from Athena output in S3:

    def run_query(query, database, s3_output):
        ''' 
        Function for executing Athena queries and return the query ID 
        '''
        client = boto3.client('athena')
        response = client.start_query_execution(
            QueryString=query,
            QueryExecutionContext={
                'Database': database
                },
            ResultConfiguration={
                'OutputLocation': s3_output,
                }
            )
        print('Execution ID: ' + response['QueryExecutionId'])
        return response
    
    
    
    def format_result(results):
        '''
        This function format the results toward append in the needed format.
        '''
        columns = [
            col['Label']
            for col in results['ResultSet']['ResultSetMetadata']['ColumnInfo']
        ]
    
        formatted_results = []
    
        for result in results['ResultSet']['Rows'][0:]:
            values = []
            for field in result['Data']:
                try:
                    values.append(list(field.values())[0]) 
                except:
                    values.append(list(' '))
    
            formatted_results.append(
                dict(zip(columns, values))
            )
        return formatted_results
    
    
    
    res = run_query(query_2, database, s3_ouput) #query Athena
    
    
    
    import sys
    import boto3
    
    marker = None
    formatted_results = []
    query_id = res['QueryExecutionId']
    i = 0
    start_time = time.time()
    
    while True:
        paginator = client.get_paginator('get_query_results')
        response_iterator = paginator.paginate( 
            QueryExecutionId=query_id,
            PaginationConfig={
                'MaxItems': 1000,
                'PageSize': 1000,
                'StartingToken': marker})
    
        for page in response_iterator:
            i = i + 1
            format_page = format_result(page)
            if i == 1:
                formatted_results = pd.DataFrame(format_page)
            elif i > 1:
                formatted_results = formatted_results.append(pd.DataFrame(format_page))
    
        try:
            marker = page['NextToken']
        except KeyError:
            break
    
    print ("My program took", time.time() - start_time, "to run")
    

    It's not formatted so good but I think it does the job...

    0 讨论(0)
  • 2021-02-13 06:41

    get_query_results only returns 1000 rows. How can I use it to get two million rows into a Pandas dataframe?

    If you try to add:

    client.get_query_results(QueryExecutionId=res['QueryExecutionId'], MaxResults=2000)
    

    You will obtain the next error:

    An error occurred (InvalidRequestException) when calling the GetQueryResults operation: MaxResults is more than maximum allowed length 1000.

    You can obtain millions of rows if you obtain the file directly from your bucket s3 (in the next example into a Pandas Dataframe):

    def obtain_data_from_s3(self):
        self.resource = boto3.resource('s3', 
                              region_name = self.region_name, 
                              aws_access_key_id = self.aws_access_key_id,
                              aws_secret_access_key= self.aws_secret_access_key)
    
        response = self.resource \
        .Bucket(self.bucket) \
        .Object(key= self.folder + self.filename + '.csv') \
        .get()
    
        return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')   
    

    The self.filename can be:

    self.filename = response['QueryExecutionId'] + ".csv"
    

    Because Athena names the files as the QueryExecutionId. I will write you all my code that takes a query and return a dataframe with all the rows and columns.

    import time
    import boto3
    import pandas as pd
    import io
    
    class QueryAthena:
    
        def __init__(self, query, database):
            self.database = database
            self.folder = 'my_folder/'
            self.bucket = 'my_bucket'
            self.s3_input = 's3://' + self.bucket + '/my_folder_input'
            self.s3_output =  's3://' + self.bucket + '/' + self.folder
            self.region_name = 'us-east-1'
            self.aws_access_key_id = "my_aws_access_key_id"
            self.aws_secret_access_key = "my_aws_secret_access_key"
            self.query = query
    
        def load_conf(self, q):
            try:
                self.client = boto3.client('athena', 
                                  region_name = self.region_name, 
                                  aws_access_key_id = self.aws_access_key_id,
                                  aws_secret_access_key= self.aws_secret_access_key)
                response = self.client.start_query_execution(
                    QueryString = q,
                        QueryExecutionContext={
                        'Database': self.database
                        },
                        ResultConfiguration={
                        'OutputLocation': self.s3_output,
                        }
                )
                self.filename = response['QueryExecutionId']
                print('Execution ID: ' + response['QueryExecutionId'])
    
            except Exception as e:
                print(e)
            return response                
    
        def run_query(self):
            queries = [self.query]
            for q in queries:
                res = self.load_conf(q)
            try:              
                query_status = None
                while query_status == 'QUEUED' or query_status == 'RUNNING' or query_status is None:
                    query_status = self.client.get_query_execution(QueryExecutionId=res["QueryExecutionId"])['QueryExecution']['Status']['State']
                    print(query_status)
                    if query_status == 'FAILED' or query_status == 'CANCELLED':
                        raise Exception('Athena query with the string "{}" failed or was cancelled'.format(self.query))
                    time.sleep(10)
                print('Query "{}" finished.'.format(self.query))
    
                df = self.obtain_data()
                return df
    
            except Exception as e:
                print(e)      
    
        def obtain_data(self):
            try:
                self.resource = boto3.resource('s3', 
                                      region_name = self.region_name, 
                                      aws_access_key_id = self.aws_access_key_id,
                                      aws_secret_access_key= self.aws_secret_access_key)
    
                response = self.resource \
                .Bucket(self.bucket) \
                .Object(key= self.folder + self.filename + '.csv') \
                .get()
    
                return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')   
            except Exception as e:
                print(e)  
    
    
    if __name__ == "__main__":       
        query = "SELECT * FROM bucket.folder"
        qa = QueryAthena(query=query, database='myAthenaDb')
        dataframe = qa.run_query()
    
    0 讨论(0)
提交回复
热议问题