There is an excellent C++ solution (actually 2 solutions: a recursive and a non-recursive), to a Cartesian Product of a vector of integer vectors. For purposes of illustrat
Been a while since I've been doing this, but here's a first attempt. No doubt it can be improved.
template<unsigned fixedIndex, class T>
class DynamicTupleGetter
{
typedef typename std::tuple_element<fixedIndex, T>::type RetType;
public:
static RetType get(unsigned dynIndex, const T& tupleInstance)
{
const RetType& ret = std::get<fixedIndex>(tupleInstance);
if (fixedIndex == dynIndex)
return ret;
return DynamicTupleGetter<fixedIndex - 1, T>::get(dynIndex, tupleInstance);
}
};
template<class T>
class DynamicTupleGetter<0, T>
{
typedef typename std::tuple_element<0, T>::type RetType;
public:
static RetType get(unsigned dynIndex, const T& tupleInstance)
{
assert(dynIndex == 0);
return std::get<0>(tupleInstance);
}
};
template<class Source>
struct Converter
{
typedef typename std::tuple_element<0, Source>::type Zeroth;
typedef typename std::tuple_element<1, Source>::type First;
static const size_t size0 = std::tuple_size<Zeroth>::value;
static const size_t size1 = std::tuple_size<First>::value;
static const size_t outerProductSize = size0 * size1;
typedef typename std::tuple_element<0, Zeroth>::type BaseType0;
typedef typename std::tuple_element<0, First>::type BaseType1;
typedef typename std::tuple<BaseType0, BaseType1> EntryType;
typedef std::array<EntryType, outerProductSize> DestinationType;
DestinationType create(const Source& source)
{
Zeroth zeroth = std::get<0>(source);
First first = std::get<1>(source);
typedef typename DynamicTupleGetter<size0 -1, Zeroth> ZerothGetter;
typedef typename DynamicTupleGetter<size1 -1, First> FirstGetter;
DestinationType result;
size_t resultIndex = 0;
for(size_t i = 0; i < size0; ++i)
for(size_t j = 0; j < size1; ++j)
{
std::get<0>(result[resultIndex]) = ZerothGetter::get(i, zeroth) ;
std::get<1>(result[resultIndex]) = FirstGetter::get(j, first);
++resultIndex;
}
return result;
}
};
template<class T>
void create(const T& source)
{
Converter<T> converter;
Converter<T>::DestinationType result = converter.create(source);
std::cout << std::get<0>(std::get<3>(result)) << "," << std::get<1>(std::get<3>(result)) << std::endl;
}
auto intPart = std::make_tuple(2,5,9);
auto stringPart = std::make_tuple("foo","bar");
auto source = std::make_tuple(intPart, stringPart);
void f()
{
create(source);
}
Simpler recursive solution. It takes vectors as function arguments, not as a tuple. This version doesn't build temporary tuples, but uses lambdas instead. Now it makes no unnecessary copies/moves and seems to get optimized successfully.
#include<tuple>
#include<vector>
// cross_imp(f, v...) means "do `f` for each element of cartesian product of v..."
template<typename F>
inline void cross_imp(F f) {
f();
}
template<typename F, typename H, typename... Ts>
inline void cross_imp(F f, std::vector<H> const& h,
std::vector<Ts> const&... t) {
for(H const& he: h)
cross_imp([&](Ts const&... ts){
f(he, ts...);
}, t...);
}
template<typename... Ts>
std::vector<std::tuple<Ts...>> cross(std::vector<Ts> const&... in) {
std::vector<std::tuple<Ts...>> res;
cross_imp([&](Ts const&... ts){
res.emplace_back(ts...);
}, in...);
return res;
}
#include<iostream>
int main() {
std::vector<int> is = {2,5,9};
std::vector<char const*> cps = {"foo","bar"};
std::vector<double> ds = {1.5, 3.14, 2.71};
auto res = cross(is, cps, ds);
for(auto& a: res) {
std::cout << '{' << std::get<0>(a) << ',' <<
std::get<1>(a) << ',' <<
std::get<2>(a) << "}\n";
}
}