Pandas: transform a dbf Table into a dataframe

后端 未结 5 1051
后悔当初
后悔当初 2021-02-12 15:59

I want to read a dbf file of an ArcGIS shapefile and dump it into a pandas dataframe. I am currently using the dbf package.

I have apparently b

相关标签:
5条回答
  • 2021-02-12 16:27

    How about using dbfpy? Here's an example that shows how to load a dbf with 3 columns into a dataframe:

    from dbfpy import dbf
    import pandas as pd
    
    df = pd.DataFrame(columns=('tileno', 'grid_code', 'area'))
    db = dbf.Dbf('test.dbf')
    for rec in db:
        data = []
        for i in range(len(rec.fieldData)):
            data.append(rec[i])
        df.loc[len(df.index)] = data
    db.close()
    

    If necessary, you could find out the column names from db.fieldNames.

    0 讨论(0)
  • 2021-02-12 16:38

    As mmann1123 stated, you can use geopandas in order to read your dbf file. The Geopandas reads it even though it may or may not have geospatial data.

    Assuming your data is only tabular data (no geographical coordinate on it), and you wish to read it and convert to a format which pandas library can read, I would suggest using geopandas.

    Here is an example:

    import geopandas as gpd
    
    My_file_path_name = r'C:\Users\...file_dbf.dbf'
    
    Table = gpd.read_file(Filename)
    
    import pandas as pd
    Pandas_Table = pd.DataFrame(Table)
    
    Keys = list(Table.keys())
    Keys.remove('ID_1','ID_2') # removing ID attributes from the Table keys list
    Keys.remove('Date') # eventually you have date attribute which you wanna preserve.
    
    DS = pd.melt(Pandas_Table, 
                 id_vars =['ID_1','ID_2'], # accepts multiple filter/ID values 
                 var_name='class_fito', # Name of the variable which will aggregate all columns from the Table into the Dataframe
                 value_name ='biomass (mg.L-1)' , # name of the variable in Dataframe
                 value_vars= Keys # parameter that defines which attributes from the Table are a summary of the DataFrame)
    
    # checking your DataFrame:
    
    type(DS)   # should appear something like: pandas.core.frame.DataFrame
    
    0 讨论(0)
  • 2021-02-12 16:41

    You might want to look at geopandas. It will allow you to do most important GIS operations

    http://geopandas.org/data_structures.html

    0 讨论(0)
  • 2021-02-12 16:42

    You should have a look at simpledbf:

    In [2]: import pandas as pd
    
    In [3]: from simpledbf import Dbf5
    
    In [4]: dbf = Dbf5('test.dbf')
    
    In [5]: df = dbf.to_dataframe()
    

    This works for me with a little sample .dbf file. Hope that helps.

    0 讨论(0)
  • 2021-02-12 16:42

    Performance can be an issue. I tested a few of the libraries suggested above and elsewhere. For my test, I used a small dbf file of 17 columns and 23 records (7 kb).

    Package simpledbf has a straightforward method to_dataframe(). And the practical aspect of the DBF table object of dbfread is the possibility to just iterate over it by adding it as an argument to Python's builtin function iter(), of which the result can be used to directly initialise a dataframe. In the case of pysal, I used the function dbf2DF as decribed here. The data from the other libraries I added to the dataframe by using the method shown above. However, only after retrieving the field names so that I could initialise the dataframe with the right column names first: from the fieldNames, _meta.keys and by means of the function ListFields respectively.

    Probably adding records 1 by 1 is not the fastest way to obtain a filled dataframe, meaning that tests with dbfpy, dbf and arcpy would result in more favourable figures when a smarter way would be chosen to add the data to the dataframe. All the same, I hope the following table - with times in seconds - is useful:

    simpledbf   0.0030
    dbfread     0.0060
    dbfpy       0.0140
    pysal       0.0160
    dbf         0.0210
    arcpy       2.7770
    
    0 讨论(0)
提交回复
热议问题