How do I check if a string is a number (float)?

后端 未结 30 3823
暗喜
暗喜 2020-11-21 05:16

What is the best possible way to check if a string can be represented as a number in Python?

The function I currently have right now is:

def is_numb         


        
相关标签:
30条回答
  • 2020-11-21 05:32

    You can generalize the exception technique in a useful way by returning more useful values than True and False. For example this function puts quotes round strings but leaves numbers alone. Which is just what I needed for a quick and dirty filter to make some variable definitions for R.

    import sys
    
    def fix_quotes(s):
        try:
            float(s)
            return s
        except ValueError:
            return '"{0}"'.format(s)
    
    for line in sys.stdin:
        input = line.split()
        print input[0], '<- c(', ','.join(fix_quotes(c) for c in input[1:]), ')'
    
    0 讨论(0)
  • 2020-11-21 05:33

    I wanted to see which method is fastest. Overall the best and most consistent results were given by the check_replace function. The fastest results were given by the check_exception function, but only if there was no exception fired - meaning its code is the most efficient, but the overhead of throwing an exception is quite large.

    Please note that checking for a successful cast is the only method which is accurate, for example, this works with check_exception but the other two test functions will return False for a valid float:

    huge_number = float('1e+100')
    

    Here is the benchmark code:

    import time, re, random, string
    
    ITERATIONS = 10000000
    
    class Timer:    
        def __enter__(self):
            self.start = time.clock()
            return self
        def __exit__(self, *args):
            self.end = time.clock()
            self.interval = self.end - self.start
    
    def check_regexp(x):
        return re.compile("^\d*\.?\d*$").match(x) is not None
    
    def check_replace(x):
        return x.replace('.','',1).isdigit()
    
    def check_exception(s):
        try:
            float(s)
            return True
        except ValueError:
            return False
    
    to_check = [check_regexp, check_replace, check_exception]
    
    print('preparing data...')
    good_numbers = [
        str(random.random() / random.random()) 
        for x in range(ITERATIONS)]
    
    bad_numbers = ['.' + x for x in good_numbers]
    
    strings = [
        ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(1,10)))
        for x in range(ITERATIONS)]
    
    print('running test...')
    for func in to_check:
        with Timer() as t:
            for x in good_numbers:
                res = func(x)
        print('%s with good floats: %s' % (func.__name__, t.interval))
        with Timer() as t:
            for x in bad_numbers:
                res = func(x)
        print('%s with bad floats: %s' % (func.__name__, t.interval))
        with Timer() as t:
            for x in strings:
                res = func(x)
        print('%s with strings: %s' % (func.__name__, t.interval))
    

    Here are the results with Python 2.7.10 on a 2017 MacBook Pro 13:

    check_regexp with good floats: 12.688639
    check_regexp with bad floats: 11.624862
    check_regexp with strings: 11.349414
    check_replace with good floats: 4.419841
    check_replace with bad floats: 4.294909
    check_replace with strings: 4.086358
    check_exception with good floats: 3.276668
    check_exception with bad floats: 13.843092
    check_exception with strings: 15.786169
    

    Here are the results with Python 3.6.5 on a 2017 MacBook Pro 13:

    check_regexp with good floats: 13.472906000000009
    check_regexp with bad floats: 12.977665000000016
    check_regexp with strings: 12.417542999999995
    check_replace with good floats: 6.011045999999993
    check_replace with bad floats: 4.849356
    check_replace with strings: 4.282754000000011
    check_exception with good floats: 6.039081999999979
    check_exception with bad floats: 9.322753000000006
    check_exception with strings: 9.952595000000002
    

    Here are the results with PyPy 2.7.13 on a 2017 MacBook Pro 13:

    check_regexp with good floats: 2.693217
    check_regexp with bad floats: 2.744819
    check_regexp with strings: 2.532414
    check_replace with good floats: 0.604367
    check_replace with bad floats: 0.538169
    check_replace with strings: 0.598664
    check_exception with good floats: 1.944103
    check_exception with bad floats: 2.449182
    check_exception with strings: 2.200056
    
    0 讨论(0)
  • 2020-11-21 05:34

    I needed to determine if a string cast into basic types (float,int,str,bool). After not finding anything on the internet I created this:

    def str_to_type (s):
        """ Get possible cast type for a string
    
        Parameters
        ----------
        s : string
    
        Returns
        -------
        float,int,str,bool : type
            Depending on what it can be cast to
    
        """    
        try:                
            f = float(s)        
            if "." not in s:
                return int
            return float
        except ValueError:
            value = s.upper()
            if value == "TRUE" or value == "FALSE":
                return bool
            return type(s)
    

    Example

    str_to_type("true") # bool
    str_to_type("6.0") # float
    str_to_type("6") # int
    str_to_type("6abc") # str
    str_to_type(u"6abc") # unicode       
    

    You can capture the type and use it

    s = "6.0"
    type_ = str_to_type(s) # float
    f = type_(s) 
    
    0 讨论(0)
  • 2020-11-21 05:34

    User helper function:

    def if_ok(fn, string):
      try:
        return fn(string)
      except Exception as e:
        return None
    

    then

    if_ok(int, my_str) or if_ok(float, my_str) or if_ok(complex, my_str)
    is_number = lambda s: any([if_ok(fn, s) for fn in (int, float, complex)])
    
    0 讨论(0)
  • 2020-11-21 05:35

    This answer provides step by step guide having function with examples to find the string is:

    • Positive integer
    • Positive/negative - integer/float
    • How to discard "NaN" (not a number) strings while checking for number?

    Check if string is positive integer

    You may use str.isdigit() to check whether given string is positive integer.

    Sample Results:

    # For digit
    >>> '1'.isdigit()
    True
    >>> '1'.isalpha()
    False
    

    Check for string as positive/negative - integer/float

    str.isdigit() returns False if the string is a negative number or a float number. For example:

    # returns `False` for float
    >>> '123.3'.isdigit()
    False
    # returns `False` for negative number
    >>> '-123'.isdigit()
    False
    

    If you want to also check for the negative integers and float, then you may write a custom function to check for it as:

    def is_number(n):
        try:
            float(n)   # Type-casting the string to `float`.
                       # If string is not a valid `float`, 
                       # it'll raise `ValueError` exception
        except ValueError:
            return False
        return True
    

    Sample Run:

    >>> is_number('123')    # positive integer number
    True
    
    >>> is_number('123.4')  # positive float number
    True
    
    >>> is_number('-123')   # negative integer number
    True
    
    >>> is_number('-123.4') # negative `float` number
    True
    
    >>> is_number('abc')    # `False` for "some random" string
    False
    

    Discard "NaN" (not a number) strings while checking for number

    The above functions will return True for the "NAN" (Not a number) string because for Python it is valid float representing it is not a number. For example:

    >>> is_number('NaN')
    True
    

    In order to check whether the number is "NaN", you may use math.isnan() as:

    >>> import math
    >>> nan_num = float('nan')
    
    >>> math.isnan(nan_num)
    True
    

    Or if you don't want to import additional library to check this, then you may simply check it via comparing it with itself using ==. Python returns False when nan float is compared with itself. For example:

    # `nan_num` variable is taken from above example
    >>> nan_num == nan_num
    False
    

    Hence, above function is_number can be updated to return False for "NaN" as:

    def is_number(n):
        is_number = True
        try:
            num = float(n)
            # check for "nan" floats
            is_number = num == num   # or use `math.isnan(num)`
        except ValueError:
            is_number = False
        return is_number
    

    Sample Run:

    >>> is_number('Nan')   # not a number "Nan" string
    False
    
    >>> is_number('nan')   # not a number string "nan" with all lower cased
    False
    
    >>> is_number('123')   # positive integer
    True
    
    >>> is_number('-123')  # negative integer
    True
    
    >>> is_number('-1.12') # negative `float`
    True
    
    >>> is_number('abc')   # "some random" string
    False
    

    PS: Each operation for each check depending on the type of number comes with additional overhead. Choose the version of is_number function which fits your requirement.

    0 讨论(0)
  • 2020-11-21 05:36

    So to put it all together, checking for Nan, infinity and complex numbers (it would seem they are specified with j, not i, i.e. 1+2j) it results in:

    def is_number(s):
        try:
            n=str(float(s))
            if n == "nan" or n=="inf" or n=="-inf" : return False
        except ValueError:
            try:
                complex(s) # for complex
            except ValueError:
                return False
        return True
    
    0 讨论(0)
提交回复
热议问题