Comparing previous row values in Pandas DataFrame

后端 未结 4 449
野趣味
野趣味 2020-11-27 13:48
import pandas as pd
data={\'col1\':[1,3,3,1,2,3,2,2]}
df=pd.DataFrame(data,columns=[\'col1\'])
print df


         col1  
    0     1          
    1     3                   


        
相关标签:
4条回答
  • 2020-11-27 14:22

    You need eq with shift:

    df['match'] = df.col1.eq(df.col1.shift())
    print (df)
       col1  match
    0     1  False
    1     3  False
    2     3   True
    3     1  False
    4     2  False
    5     3  False
    6     2  False
    7     2   True
    

    Or instead eq use ==, but it is a bit slowier in large DataFrame:

    df['match'] = df.col1 == df.col1.shift()
    print (df)
       col1  match
    0     1  False
    1     3  False
    2     3   True
    3     1  False
    4     2  False
    5     3  False
    6     2  False
    7     2   True
    

    Timings:

    import pandas as pd
    data={'col1':[1,3,3,1,2,3,2,2]}
    df=pd.DataFrame(data,columns=['col1'])
    print (df)
    #[80000 rows x 1 columns]
    df = pd.concat([df]*10000).reset_index(drop=True)
    
    df['match'] = df.col1 == df.col1.shift()
    df['match1'] = df.col1.eq(df.col1.shift())
    print (df)
    
    In [208]: %timeit df.col1.eq(df.col1.shift())
    The slowest run took 4.83 times longer than the fastest. This could mean that an intermediate result is being cached.
    1000 loops, best of 3: 933 µs per loop
    
    In [209]: %timeit df.col1 == df.col1.shift()
    1000 loops, best of 3: 1 ms per loop
    
    0 讨论(0)
  • 2020-11-27 14:22

    I'm surprised no one mentioned rolling method here. rolling can be easily used to verify if the n-previous values are all the same or to perform any custom operations. This is certainly not as fast as using diff or shift but it can be easily adapted for larger windows:

    df['match'] = df['col1'].rolling(2).apply(lambda x: len(set(x)) != len(x),raw= True).replace({0 : False, 1: True})
    
    0 讨论(0)
  • 2020-11-27 14:36

    Here's a NumPy arrays based approach using slicing that lets us use the views into the input array for efficiency purposes -

    def comp_prev(a):
        return np.concatenate(([False],a[1:] == a[:-1]))
    
    df['match'] = comp_prev(df.col1.values)
    

    Sample run -

    In [48]: df['match'] = comp_prev(df.col1.values)
    
    In [49]: df
    Out[49]: 
       col1  match
    0     1  False
    1     3  False
    2     3   True
    3     1  False
    4     2  False
    5     3  False
    6     2  False
    7     2   True
    

    Runtime test -

    In [56]: data={'col1':[1,3,3,1,2,3,2,2]}
        ...: df0=pd.DataFrame(data,columns=['col1'])
        ...: 
    
    #@jezrael's soln1
    In [57]: df = pd.concat([df0]*10000).reset_index(drop=True)
    
    In [58]: %timeit df['match'] = df.col1 == df.col1.shift() 
    1000 loops, best of 3: 1.53 ms per loop
    
    #@jezrael's soln2
    In [59]: df = pd.concat([df0]*10000).reset_index(drop=True)
    
    In [60]: %timeit df['match'] = df.col1.eq(df.col1.shift())
    1000 loops, best of 3: 1.49 ms per loop
    
    #@Nickil Maveli's soln1   
    In [61]: df = pd.concat([df0]*10000).reset_index(drop=True)
    
    In [64]: %timeit df['match'] = df['col1'].diff().eq(0) 
    1000 loops, best of 3: 1.02 ms per loop
    
    #@Nickil Maveli's soln2
    In [65]: df = pd.concat([df0]*10000).reset_index(drop=True)
    
    In [66]: %timeit df['match'] = np.ediff1d(df['col1'].values, to_begin=np.NaN) == 0
    1000 loops, best of 3: 1.52 ms per loop
    
    # Posted approach in this post
    In [67]: df = pd.concat([df0]*10000).reset_index(drop=True)
    
    In [68]: %timeit df['match'] = comp_prev(df.col1.values)
    1000 loops, best of 3: 376 µs per loop
    
    0 讨论(0)
  • 2020-11-27 14:37

    1) pandas approach: Use diff:

    df['match'] = df['col1'].diff().eq(0)
    

    2) numpy approach: Use np.ediff1d.

    df['match'] = np.ediff1d(df['col1'].values, to_begin=np.NaN) == 0
    

    Both produce:

    Timings: (for the same DF used by @jezrael)

    %timeit df.col1.eq(df.col1.shift())
    1000 loops, best of 3: 731 µs per loop
    
    %timeit df['col1'].diff().eq(0)
    1000 loops, best of 3: 405 µs per loop
    
    0 讨论(0)
提交回复
热议问题