Our organization has a required coding rule (without any explanation) that:
if … else if constructs should be terminated with an el
The basic reason is probably code coverage and the implicit else: how will the code behave if the condition is not true? For genuine testing, you need some way to see that you have tested with the condition false. If every test case you have goes through the if clause, your code could have problems in the real world because of a condition that you did not test.
However, some conditions may properly be like Example 1, like on a tax return: "If the result is less than 0, enter 0." You still need to have a test where the condition is false.
Well, my example involves undefined behavior, but sometimes some people try to be fancy and fails hard, take a look:
int a = 0;
bool b = true;
uint8_t* bPtr = (uint8_t*)&b;
*bPtr = 0xCC;
if(b == true)
{
a += 3;
}
else if(b == false)
{
a += 5;
}
else
{
exit(3);
}
You probably would never expect to have bool
which is not true
nor false
, however it may happen. Personally I believe this is problem caused by person who decides to do something fancy, but additional else
statement can prevent any further issues.
Logically any test implies two branches. What do you do if it is true, and what do you do if it is false.
For those cases where either branch has no functionality, it is reasonable to add a comment about why it doesn't need to have functionality.
This may be of benefit for the next maintenance programmer to come along. They should not have to search too far to decide if the code is correct. You can kind of Prehunt the Elephant.
Personally, it helps me as it forces me to look at the else case, and evaluate it. It may be an impossible condition, in which case i may throw an exception as the contract is violated. It may be benign, in which case a comment may be enough.
Your mileage may vary.
Most the time when you just have a single if
statement, it's probably one of reasons such as:
Example
void print (char * text)
{
if (text == null) return; // guard check
printf(text);
}
But when you do if .. else if
, it's probably one of reasons such as:
And in case your if .. else if
covers all possibilities, in that case your last if (...)
is not needed, you can just remove it, because at that point the only possible values are the ones covered by that condition.
Example
int absolute_value (int n)
{
if (n == 0)
{
return 0;
}
else if (n > 0)
{
return n;
}
else /* if (n < 0) */ // redundant check
{
return (n * (-1));
}
}
And in most of these reasons, it's possible something doesn't fit into any of the categories in your if .. else if
, thus the need to handle them in a final else
clause, handling can be done through business-level procedure, user notification, internal error mechanism, ..etc.
Example
#DEFINE SQRT_TWO 1.41421356237309504880
#DEFINE SQRT_THREE 1.73205080756887729352
#DEFINE SQRT_FIVE 2.23606797749978969641
double square_root (int n)
{
if (n > 5) return sqrt((double)n);
else if (n == 5) return SQRT_FIVE;
else if (n == 4) return 2.0;
else if (n == 3) return SQRT_THREE;
else if (n == 2) return SQRT_TWO;
else if (n == 1) return 1.0;
else if (n == 0) return 0.0;
else return sqrt(-1); // error handling
}
This final else
clause is quite similar to few other things in languages such as Java
and C++
, such as:
default
case in a switch statementcatch(...)
that comes after all specific catch
blocksfinally
in a try-catch clauseI would like to add to – and partly contradict – the previous answers. While it is certainly common to use if-else if in a switch-like manner that should cover the full range of thinkable values for an expression, it is by no means guaranteed that any range of possible conditions is fully covered. The same can be said about the switch construct itself, hence the requirement to use a default clause, which catches all remaining values and can, if not otherwise required anyway, be used as an assertion safeguard.
The question itself features a good counter-example: The second condition does not relate to x at all (which is the reason why I often prefer the more flexible if-based variant over the switch-based variant). From the example it is obvious that if condition A is met, x should be set to a certain value. Should A not be met, then condition B is tested. If it is met, then x should receive another value. If neither A nor B are met, then x should remain unchanged.
Here we can see that an empty else branch should be used to comment on the programmer's intention for the reader.
On the other hand, I cannot see why there must be an else clause especially for the latest and innermost if statement. In C, there is no such thing as an 'else if'. There is only if and else. Instead, according to MISRA, the construct should formally be indented this way (and I should have put the opening curly braces on their own lines, but I don't like that):
if (A) {
// do something
}
else {
if (B) {
// do something else (no pun intended)
}
else {
// don't do anything here
}
}
When MISRA asks to put curly braces around every branch, then it contradicts itself by mentioning "if ... else if constructs".
Anyone can imagine the ugliness of deeply nested if else trees, see here on a side note. Now imagine that this construct can be arbitrarily extended anywhere. Then asking for an else clause in the end, but not anywhere else, becomes absurd.
if (A) {
if (B) {
// do something
}
// you could to something here
}
else {
// or here
if (B) { // or C?
// do something else (no pun intended)
}
else {
// don't do anything here, if you don't want to
}
// what if I wanted to do something here? I need brackets for that.
}
So I am sure that the people who developed the MISRA guidelines had the switch-like if-else if intention in mind.
In the end, it comes down for them to defining precisely what is meant with an "if ... else if construct"
This, is done to make the code more readable, for later references and to make it clear, to a later reviewer, that the remaining cases handled by the last else
, are do nothing cases, so that they are not overlooked somehow at first sight.
This is a good programming practice, which makes code reusable and extend-able.