Why can't decimal numbers be represented exactly in binary?

前端 未结 20 3474
不知归路
不知归路 2020-11-21 05:15

There have been several questions posted to SO about floating-point representation. For example, the decimal number 0.1 doesn\'t have an exact binary representation, so it\'

相关标签:
20条回答
  • 2020-11-21 05:30

    BCD - Binary-coded Decimal - representations are exact. They are not very space-efficient, but that's a trade-off you have to make for accuracy in this case.

    0 讨论(0)
  • 2020-11-21 05:31

    Decimal numbers can be represented exactly, if you have enough space - just not by floating binary point numbers. If you use a floating decimal point type (e.g. System.Decimal in .NET) then plenty of values which can't be represented exactly in binary floating point can be exactly represented.

    Let's look at it another way - in base 10 which you're likely to be comfortable with, you can't express 1/3 exactly. It's 0.3333333... (recurring). The reason you can't represent 0.1 as a binary floating point number is for exactly the same reason. You can represent 3, and 9, and 27 exactly - but not 1/3, 1/9 or 1/27.

    The problem is that 3 is a prime number which isn't a factor of 10. That's not an issue when you want to multiply a number by 3: you can always multiply by an integer without running into problems. But when you divide by a number which is prime and isn't a factor of your base, you can run into trouble (and will do so if you try to divide 1 by that number).

    Although 0.1 is usually used as the simplest example of an exact decimal number which can't be represented exactly in binary floating point, arguably 0.2 is a simpler example as it's 1/5 - and 5 is the prime that causes problems between decimal and binary.


    Side note to deal with the problem of finite representations:

    Some floating decimal point types have a fixed size like System.Decimal others like java.math.BigDecimal are "arbitrarily large" - but they'll hit a limit at some point, whether it's system memory or the theoretical maximum size of an array. This is an entirely separate point to the main one of this answer, however. Even if you had a genuinely arbitrarily large number of bits to play with, you still couldn't represent decimal 0.1 exactly in a floating binary point representation. Compare that with the other way round: given an arbitrary number of decimal digits, you can exactly represent any number which is exactly representable as a floating binary point.

    0 讨论(0)
  • 2020-11-21 05:31

    (Note: I'll append 'b' to indicate binary numbers here. All other numbers are given in decimal)

    One way to think about things is in terms of something like scientific notation. We're used to seeing numbers expressed in scientific notation like, 6.022141 * 10^23. Floating point numbers are stored internally using a similar format - mantissa and exponent, but using powers of two instead of ten.

    Your 61.0 could be rewritten as 1.90625 * 2^5, or 1.11101b * 2^101b with the mantissa and exponents. To multiply that by ten and (move the decimal point), we can do:

    (1.90625 * 2^5) * (1.25 * 2^3) = (2.3828125 * 2^8) = (1.19140625 * 2^9)

    or in with the mantissa and exponents in binary:

    (1.11101b * 2^101b) * (1.01b * 2^11b) = (10.0110001b * 2^1000b) = (1.00110001b * 2^1001b)

    Note what we did there to multiply the numbers. We multiplied the mantissas and added the exponents. Then, since the mantissa ended greater than two, we normalized the result by bumping the exponent. It's just like when we adjust the exponent after doing an operation on numbers in decimal scientific notation. In each case, the values that we worked with had a finite representation in binary, and so the values output by the basic multiplication and addition operations also produced values with a finite representation.

    Now, consider how we'd divide 61 by 10. We'd start by dividing the mantissas, 1.90625 and 1.25. In decimal, this gives 1.525, a nice short number. But what is this if we convert it to binary? We'll do it the usual way -- subtracting out the largest power of two whenever possible, just like converting integer decimals to binary, but we'll use negative powers of two:

    1.525         - 1*2^0   --> 1
    0.525         - 1*2^-1  --> 1
    0.025         - 0*2^-2  --> 0
    0.025         - 0*2^-3  --> 0
    0.025         - 0*2^-4  --> 0
    0.025         - 0*2^-5  --> 0
    0.025         - 1*2^-6  --> 1
    0.009375      - 1*2^-7  --> 1
    0.0015625     - 0*2^-8  --> 0
    0.0015625     - 0*2^-9  --> 0
    0.0015625     - 1*2^-10 --> 1
    0.0005859375  - 1*2^-11 --> 1
    0.00009765625...
    

    Uh oh. Now we're in trouble. It turns out that 1.90625 / 1.25 = 1.525, is a repeating fraction when expressed in binary: 1.11101b / 1.01b = 1.10000110011...b Our machines only have so many bits to hold that mantissa and so they'll just round the fraction and assume zeroes beyond a certain point. The error you see when you divide 61 by 10 is the difference between:

    1.100001100110011001100110011001100110011...b * 2^10b
    and, say:
    1.100001100110011001100110b * 2^10b

    It's this rounding of the mantissa that leads to the loss of precision that we associate with floating point values. Even when the mantissa can be expressed exactly (e.g., when just adding two numbers), we can still get numeric loss if the mantissa needs too many digits to fit after normalizing the exponent.

    We actually do this sort of thing all the time when we round decimal numbers to a manageable size and just give the first few digits of it. Because we express the result in decimal it feels natural. But if we rounded a decimal and then converted it to a different base, it'd look just as ugly as the decimals we get due to floating point rounding.

    0 讨论(0)
  • 2020-11-21 05:36

    There's a threshold because the meaning of the digit has gone from integer to non-integer. To represent 61, you have 6*10^1 + 1*10^0; 10^1 and 10^0 are both integers. 6.1 is 6*10^0 + 1*10^-1, but 10^-1 is 1/10, which is definitely not an integer. That's how you end up in Inexactville.

    0 讨论(0)
  • 2020-11-21 05:39

    There are an infinite number of rational numbers, and a finite number of bits with which to represent them. See http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems.

    0 讨论(0)
  • 2020-11-21 05:45

    For example, the number 61.0 has an exact binary representation because the integral portion of any number is always exact. But the number 6.10 is not exact. All I did was move the decimal one place and suddenly I've gone from Exactopia to Inexactville. Mathematically, there should be no intrinsic difference between the two numbers -- they're just numbers.

    Let's step away for a moment from the particulars of bases 10 and 2. Let's ask - in base b, what numbers have terminating representations, and what numbers don't? A moment's thought tells us that a number x has a terminating b-representation if and only if there exists an integer n such that x b^n is an integer.

    So, for example, x = 11/500 has a terminating 10-representation, because we can pick n = 3 and then x b^n = 22, an integer. However x = 1/3 does not, because whatever n we pick we will not be able to get rid of the 3.

    This second example prompts us to think about factors, and we can see that for any rational x = p/q (assumed to be in lowest terms), we can answer the question by comparing the prime factorisations of b and q. If q has any prime factors not in the prime factorisation of b, we will never be able to find a suitable n to get rid of these factors.

    Thus for base 10, any p/q where q has prime factors other than 2 or 5 will not have a terminating representation.

    So now going back to bases 10 and 2, we see that any rational with a terminating 10-representation will be of the form p/q exactly when q has only 2s and 5s in its prime factorisation; and that same number will have a terminating 2-representatiion exactly when q has only 2s in its prime factorisation.

    But one of these cases is a subset of the other! Whenever

    q has only 2s in its prime factorisation

    it obviously is also true that

    q has only 2s and 5s in its prime factorisation

    or, put another way, whenever p/q has a terminating 2-representation, p/q has a terminating 10-representation. The converse however does not hold - whenever q has a 5 in its prime factorisation, it will have a terminating 10-representation , but not a terminating 2-representation. This is the 0.1 example mentioned by other answers.

    So there we have the answer to your question - because the prime factors of 2 are a subset of the prime factors of 10, all 2-terminating numbers are 10-terminating numbers, but not vice versa. It's not about 61 versus 6.1 - it's about 10 versus 2.

    As a closing note, if by some quirk people used (say) base 17 but our computers used base 5, your intuition would never have been led astray by this - there would be no (non-zero, non-integer) numbers which terminated in both cases!

    0 讨论(0)
提交回复
热议问题