Faster alternatives to Pandas pivot_table

前端 未结 3 1026
隐瞒了意图╮
隐瞒了意图╮ 2021-02-11 09:33

I\'m using Pandas pivot_table function on a large dataset (10 million rows, 6 columns). As execution time is paramount, I try to speed up the process. Currently it

相关标签:
3条回答
  • 2021-02-11 10:02

    When you read the csv file into a df, you could pass a convert function (via the read_csv parameter converters), to transform client_name into a hash and downcast orders to an appropriate int type, in particular, an unsigned one.

    This function lists the types and their ranges:

    import numpy as np
    
    def list_np_types():
        for k, v in np.sctypes.items():
            for i, d in enumerate(v):
                if np.dtype(d).kind in 'iu':
                    # only int and uint have a definite range
                    fmt = '{:>7}, {:>2}: {:>26}  From: {:>20}\tTo: {}'
                    print(fmt.format(k, i, str(d),
                                     str(np.iinfo(d).min),
                                     str(np.iinfo(d).max)))
    
                else:
                    print('{:>7}, {:>2}: {:>26}'.format(k, i, str(d)))
    
    
    list_np_types()
    

    Output:

        int,  0:       <class 'numpy.int8'>  From:                 -128 To: 127
        int,  1:      <class 'numpy.int16'>  From:               -32768 To: 32767
        int,  2:      <class 'numpy.int32'>  From:          -2147483648 To: 2147483647
        int,  3:      <class 'numpy.int64'>  From: -9223372036854775808 To: 9223372036854775807
       uint,  0:      <class 'numpy.uint8'>  From:                    0 To: 255
       uint,  1:     <class 'numpy.uint16'>  From:                    0 To: 65535
       uint,  2:     <class 'numpy.uint32'>  From:                    0 To: 4294967295
       uint,  3:     <class 'numpy.uint64'>  From:                    0 To: 18446744073709551615
      float,  0:    <class 'numpy.float16'>
      float,  1:    <class 'numpy.float32'>
      float,  2:    <class 'numpy.float64'>
    complex,  0:  <class 'numpy.complex64'>
    complex,  1: <class 'numpy.complex128'>
     others,  0:             <class 'bool'>
     others,  1:           <class 'object'>
     others,  2:            <class 'bytes'>
     others,  3:              <class 'str'>
     others,  4:       <class 'numpy.void'>
    
    0 讨论(0)
  • 2021-02-11 10:14

    Convert the columns months and industry to categorical columns: https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html This way you avoid a lot of string comparisons.

    0 讨论(0)
  • 2021-02-11 10:15

    You can use Sparse Matrices. They are fast to implement, a little bit restricted though. For example: You can't do indexing on a COO_matrix

    I recently needed to train a recommmender system(lightFM) and it accepted sparse matrices as input, which made my job a lot easier. See it in action:

    row  = np.array([0, 3, 1, 0])
    col = np.array([0, 3, 1, 2])
    data = np.array([4, 5, 7, 9])
    mat = sparse.coo_matrix((data, (row, col)), shape=(4, 4))
    
    >>> print(mat)
      (0, 0)    4
      (3, 3)    5
      (1, 1)    7
      (0, 2)    9
    >>> print(mat.toarray())
    [[4 0 9 0]
     [0 7 0 0]
     [0 0 0 0]
     [0 0 0 5]]
    

    As you can see, it automatically creates a pivot table for you using the columns and rows of the data you have and fills the rest with zeros. You can convert the sparse matrix into array and dataframe as well (df = pd.DataFrame.sparse.from_spmatrix(mat, index=..., columns=...))

    0 讨论(0)
提交回复
热议问题