I have a bit-map image:
( However this should work with any arbitrary image )
Now you drawing each pixel as SCNBox of certain color, that means:
Seems like common Minecraft-like optimization problem:
Pseudo-code for meshing algorithm that skips faces of adjancent cubes (simplier, but less effective than greedy meshing):
#define SIZE_X = 16; // image width
#define SIZE_Y = 16; // image height
// pixel data, 0 = transparent pixel
int data[SIZE_X][SIZE_Y];
// check if there is non-transparent neighbour at x, y
BOOL has_neighbour(x, y) {
if (x < 0 || x >= SIZE_X || y < 0 || y >= SIZE_Y || data[x][y] == 0)
return NO; // out of dimensions or transparent
else
return YES;
}
void add_face(x, y orientation, color) {
// add face at (x, y) with specified color and orientation = TOP, BOTTOM, LEFT, RIGHT, FRONT, BACK
// can be (easier and slower) implemented with SCNPlane's: https://developer.apple.com/library/mac/documentation/SceneKit/Reference/SCNPlane_Class/index.html#//apple_ref/doc/uid/TP40012010-CLSCHSCNPlane-SW8
// or (harder and faster) using Custom Geometry: https://github.com/d-ronnqvist/blogpost-codesample-CustomGeometry/blob/master/CustomGeometry/CustomGeometryView.m#L84
}
for (x = 0; x < SIZE_X; x++) {
for (y = 0; y < SIZE_Y; y++) {
int color = data[x][y];
// skip current pixel is transparent
if (color == 0)
continue;
// check neighbour at top
if (! has_neighbour(x, y + 1))
add_face(x,y, TOP, );
// check neighbour at bottom
if (! has_neighbour(x, y - 1))
add_face(x,y, BOTTOM);
// check neighbour at bottom
if (! has_neighbour(x - 1, y))
add_face(x,y, LEFT);
// check neighbour at bottom
if (! has_neighbour(x, y - 1))
add_face(x,y, RIGHT);
// since array is 2D, front and back faces is always visible for non-transparent pixels
add_face(x,y, FRONT);
add_face(x,y, BACK);
}
}
A lot of depends on input image. If it is not big and without wide variety of colors, it I would go with SCNNode
adding SCNPlane
's for visible faces and then flattenedClone()
ing result.
An approach similar to the one proposed by Ef Dot:
SCNMaterial
per color.SCNGeometryElement
) use the same material. In other words, use one geometry element per material (color).So you will have to build a SCNGeometry
that has N
geometry elements and N
materials where N
is the number of distinct colors in your image.
If you don't feel comfortable with triangulating the polygons yourself your can leverage SCNShape
.
UIBezierPath
and a build a SCNShape
with that.SCNGeometry
Note that some vertices will be duplicated if you use a collection of SCNShape
s to build the geometry. With little effort you can make sure that no two vertices in your final source have the same position. Update the indexes in the geometry elements accordingly.
I can also direct you to this excellent GitHub repo by Nick Lockwood:
https://github.com/nicklockwood/FPSControls
It will show you how to generate the meshes as planes (instead of cubes) which is a fast way to achieve what you need for simple scenes using a "neighboring" check.
If you need large complex scenes, then I suggest you go for the solution proposed by Ef Dot using a greedy meshing algorithm.