Cleaning the values of a multitype data frame in python/pandas, I want to trim the strings. I am currently doing it in two instructions :
import pandas as pd
If you really want to use regex, then
>>> df.replace('(^\s+|\s+$)', '', regex=True, inplace=True)
>>> df
0 1
0 a 10
1 c 5
But it should be faster to do it like this:
>>> df[0] = df[0].str.strip()
def trim(x):
if x.dtype == object:
x = x.str.split(' ').str[0]
return(x)
df = df.apply(trim)
Here's a compact version of using applymap
with a straightforward lambda expression to call strip
only when the value is of a string type:
df.applymap(lambda x: x.strip() if isinstance(x, str) else x)
A more complete example:
import pandas as pd
def trim_all_columns(df):
"""
Trim whitespace from ends of each value across all series in dataframe
"""
trim_strings = lambda x: x.strip() if isinstance(x, str) else x
return df.applymap(trim_strings)
# simple example of trimming whitespace from data elements
df = pd.DataFrame([[' a ', 10], [' c ', 5]])
df = trim_all_columns(df)
print(df)
>>>
0 1
0 a 10
1 c 5
Here's a working example hosted by trinket: https://trinket.io/python3/e6ab7fb4ab
You can try:
df[0] = df[0].str.strip()
or more specifically for all string columns
non_numeric_columns = list(set(df.columns)-set(df._get_numeric_data().columns))
df[non_numeric_columns] = df[non_numeric_columns].apply(lambda x : str(x).strip())
You can use the apply function of the Series
object:
>>> df = pd.DataFrame([[' a ', 10], [' c ', 5]])
>>> df[0][0]
' a '
>>> df[0] = df[0].apply(lambda x: x.strip())
>>> df[0][0]
'a'
Note the usage of
strip
and not theregex
which is much faster
Another option - use the apply function of the DataFrame object:
>>> df = pd.DataFrame([[' a ', 10], [' c ', 5]])
>>> df.apply(lambda x: x.apply(lambda y: y.strip() if type(y) == type('') else y), axis=0)
0 1
0 a 10
1 c 5
You can use DataFrame.select_dtypes to select string
columns and then apply
function str.strip.
Notice: Values cannot be types
like dicts
or lists
, because their dtypes
is object
.
df_obj = df.select_dtypes(['object'])
print (df_obj)
0 a
1 c
df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip())
print (df)
0 1
0 a 10
1 c 5
But if there are only a few columns use str.strip:
df[0] = df[0].str.strip()