A lot of C++ books and tutorials explain how to do this, but I haven\'t seen one that gives a convincing reason to choose to do this.
I understand very well why functio
Here is a typical scenario we have here. We have a notification framework, where a class can register to multiple different notifications. When registering to a notification, we pass the member function pointer. This is actually very similar to C# events.
class MyClass
{
MyClass()
{
NotificationMgr::Register( FunctionPtr( this, OnNotification ) );
}
~MyClass()
{
NotificationMgr::UnRegister( FunctionPtr( this, OnNotification ) );
}
void OnNotification( ... )
{
// handle notification
}
};
Functors are not a priori object-oriented (in C++, the term “functor” usually means a struct defining an operator ()
with arbitrary arguments and return value that can be used as syntactical drop-in replacements to real functions or function pointers). However, their object-oriented problem has a lot of issues, first and foremost usability. It's just a whole lot of complicated boilerplate code. In order for a decent signalling framework as in most dialog frameworks, a whole lot of inheritance mess becomes necessary.
Instance-bound function pointers would be very beneficial here (.NET demonstrates this amply with delegates).
However, C++ member function pointers satisfy another need still. Imagine, for example, that you've got a lot of values in a list of which you want to execute one method, say its print()
. A function pointer to YourType::size
helps here because it lets you write such code:
std::for_each(lst.begin(), lst.end(), std::mem_fun(&YourType::print))
It is like using lambdas. You always can pass all necessary local variables to a simple function, but sometimes you have to pass more then one of them.
So using member functions will save you from passing all necessary member fields to a functor. That's all.
In the past, member function pointers used to be useful in scenarios like this:
class Image {
// avoid duplicating the loop code
void each(void(Image::* callback)(Point)) {
for(int x = 0; x < w; x++)
for(int y = 0; y < h; y++)
callback(Point(x, y));
}
void applyGreyscale() { each(&Image::greyscalePixel); }
void greyscalePixel(Point p) {
Color c = pixels[p];
pixels[p] = Color::fromHsv(0, 0, (c.r() + c.g() + c.b()) / 3);
}
void applyInvert() { each(&Image::invertPixel); }
void invertPixel(Point p) {
Color c = pixels[p];
pixels[p] = Color::fromRgb(255 - c.r(), 255 - r.g(), 255 - r.b());
}
};
I've seen that used in a commercial painting app. (interestingly, it's one of the few C++ problems better solved with the preprocessor).
Today, however, the only use for member function pointers is inside the implementation of boost::bind
.