Can anyone provide some pseudo code for a roulette selection function? How would I implement this:
Based on my research ,Here is another implementation in C# if there is a need for it:
//those with higher fitness get selected wit a large probability
//return-->individuals with highest fitness
private int RouletteSelection()
{
double randomFitness = m_random.NextDouble() * m_totalFitness;
int idx = -1;
int mid;
int first = 0;
int last = m_populationSize -1;
mid = (last - first)/2;
// ArrayList's BinarySearch is for exact values only
// so do this by hand.
while (idx == -1 && first <= last)
{
if (randomFitness < (double)m_fitnessTable[mid])
{
last = mid;
}
else if (randomFitness > (double)m_fitnessTable[mid])
{
first = mid;
}
mid = (first + last)/2;
// lies between i and i+1
if ((last - first) == 1)
idx = last;
}
return idx;
}
From the above answer, I got the following, which was clearer to me than the answer itself.
To give an example:
Random(sum) :: Random(12) Iterating through the population, we check the following: random < sum
Let us chose 7 as the random number.
Index | Fitness | Sum | 7 < Sum
0 | 2 | 2 | false
1 | 3 | 5 | false
2 | 1 | 6 | false
3 | 4 | 10 | true
4 | 2 | 12 | ...
Through this example, the most fit (Index 3) has the highest percentage of being chosen (33%); as the random number only has to land within 6->10, and it will be chosen.
for (unsigned int i=0;i<sets.size();i++) {
sum += sets[i].eval();
}
double rand = (((double)rand() / (double)RAND_MAX) * sum);
sum = 0;
for (unsigned int i=0;i<sets.size();i++) {
sum += sets[i].eval();
if (rand < sum) {
//breed i
break;
}
}
Roulette Wheel Selection in MatLab:
TotalFitness=sum(Fitness);
ProbSelection=zeros(PopLength,1);
CumProb=zeros(PopLength,1);
for i=1:PopLength
ProbSelection(i)=Fitness(i)/TotalFitness;
if i==1
CumProb(i)=ProbSelection(i);
else
CumProb(i)=CumProb(i-1)+ProbSelection(i);
end
end
SelectInd=rand(PopLength,1);
for i=1:PopLength
flag=0;
for j=1:PopLength
if(CumProb(j)<SelectInd(i) && CumProb(j+1)>=SelectInd(i))
SelectedPop(i,1:IndLength)=CurrentPop(j+1,1:IndLength);
flag=1;
break;
end
end
if(flag==0)
SelectedPop(i,1:IndLength)=CurrentPop(1,1:IndLength);
end
end
This Swift 4 array extension implements weighted random selection, a.k.a Roulette selection from its elements:
public extension Array where Element == Double {
/// Consider the elements as weight values and return a weighted random selection by index.
/// a.k.a Roulette wheel selection.
func weightedRandomIndex() -> Int {
var selected: Int = 0
var total: Double = self[0]
for i in 1..<self.count { // start at 1
total += self[i]
if( Double.random(in: 0...1) <= (self[i] / total)) { selected = i }
}
return selected
}
}
For example given the two element array:
[0.9, 0.1]
weightedRandomIndex()
will return zero 90% of the time and one 10% of the time.
Here is a more complete test:
let weights = [0.1, 0.7, 0.1, 0.1]
var results = [Int:Int]()
let n = 100000
for _ in 0..<n {
let index = weights.weightedRandomIndex()
results[index] = results[index, default:0] + 1
}
for (key,val) in results.sorted(by: { a,b in weights[a.key] < weights[b.key] }) {
print(weights[key], Double(val)/Double(n))
}
output:
0.1 0.09906
0.1 0.10126
0.1 0.09876
0.7 0.70092
This answer is basically the same as Andrew Mao's answer here: https://stackoverflow.com/a/15582983/74975
Here is the code in python. This code can also handle the negative value of fitness.
from numpy import min, sum, ptp, array
from numpy.random import uniform
list_fitness1 = array([-12, -45, 0, 72.1, -32.3])
list_fitness2 = array([0.5, 6.32, 988.2, 1.23])
def get_index_roulette_wheel_selection(list_fitness=None):
""" It can handle negative also. Make sure your list fitness is 1D-numpy array"""
scaled_fitness = (list_fitness - min(list_fitness)) / ptp(list_fitness)
minimized_fitness = 1.0 - scaled_fitness
total_sum = sum(minimized_fitness)
r = uniform(low=0, high=total_sum)
for idx, f in enumerate(minimized_fitness):
r = r + f
if r > total_sum:
return idx
get_index_roulette_wheel_selection(list_fitness1)
get_index_roulette_wheel_selection(list_fitness2)
This is called roulette-wheel selection via stochastic acceptance:
/// \param[in] f_max maximum fitness of the population
///
/// \return index of the selected individual
///
/// \note Assuming positive fitness. Greater is better.
unsigned rw_selection(double f_max)
{
for (;;)
{
// Select randomly one of the individuals
unsigned i(random_individual());
// The selection is accepted with probability fitness(i) / f_max
if (uniform_random_01() < fitness(i) / f_max)
return i;
}
}
The average number of attempts needed for a single selection is:
τ = fmax / avg(f)
τ doesn't depend explicitly on the number of individual in the population (N), but the ratio can change with N.
However in many application (where the fitness remains bounded and the average fitness doesn't diminish to 0 for increasing N) τ doesn't increase unboundedly with N and thus a typical complexity of this algorithm is O(1) (roulette wheel selection using search algorithms has O(N) or O(log N) complexity).
The probability distribution of this procedure is indeed the same as in the classical roulette-wheel selection.
For further details see: