How SelectKBest (chi2) calculates score?

后端 未结 1 1647
既然无缘
既然无缘 2021-02-10 12:16

I am trying to find the most valuable features by applying feature selection methods to my dataset. Im using the SelectKBest function for now. I can generate the score values an

相关标签:
1条回答
  • 2021-02-10 12:41

    Say you have one feature and a target with 3 possible values

    X = np.array([3.4, 3.4, 3. , 2.8, 2.7, 2.9, 3.3, 3. , 3.8, 2.5])
    y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2])
    
         X  y
    0  3.4  0
    1  3.4  0
    2  3.0  0
    3  2.8  1
    4  2.7  1
    5  2.9  1
    6  3.3  2
    7  3.0  2
    8  3.8  2
    9  2.5  2
    

    First we binarize the target

    y = LabelBinarizer().fit_transform(y)
    
         X  y1  y2  y3
    0  3.4   1   0   0
    1  3.4   1   0   0
    2  3.0   1   0   0
    3  2.8   0   1   0
    4  2.7   0   1   0
    5  2.9   0   1   0
    6  3.3   0   0   1
    7  3.0   0   0   1
    8  3.8   0   0   1
    9  2.5   0   0   1
    

    Then perform a dot product between feature and target, i.e. sum all feature values by class value

    observed = y.T.dot(X) 
    >>> observed 
    array([ 9.8,  8.4, 12.6])
    

    Next take a sum of feature values and calculate class frequency

    feature_count = X.sum(axis=0).reshape(1, -1)
    class_prob = y.mean(axis=0).reshape(1, -1)
    
    >>> class_prob, feature_count
    (array([[0.3, 0.3, 0.4]]), array([[30.8]]))
    

    Now as in the first step we take the dot product, and get expected and observed matrices

    expected = np.dot(class_prob.T, feature_count)
    >>> expected 
    array([[ 9.24],[ 9.24],[12.32]])
    

    Finally we calculate a chi^2 value:

    chi2 = ((observed.reshape(-1,1) - expected) ** 2 / expected).sum(axis=0)
    >>> chi2 
    array([0.11666667])
    

    We have a chi^2 value, now we need to judge how extreme it is. For that we use a chi^2 distribution with number of classes - 1 degrees of freedom and calculate the area from chi^2 to infinity to get the probability of chi^2 be the same or more extreme than what we've got. This is a p-value. (using chi square survival function from scipy)

    p = scipy.special.chdtrc(3 - 1, chi2)
    >>> p
    array([0.94333545])
    

    Compare with SelectKBest:

    s = SelectKBest(chi2, k=1)
    s.fit(X.reshape(-1,1),y)
    >>> s.scores_, s.pvalues_
    (array([0.11666667]), [0.943335449873492])
    
    0 讨论(0)
提交回复
热议问题