How to display image stored in pandas dataframe?

前端 未结 2 791
太阳男子
太阳男子 2021-02-10 09:53
import pandas as pd
from scipy import misc
import numpy as np
import matplotlib.pyplot as plt

W = {\'img\':[misc.imread(\'pic.jpg\')]}
df = pd.DataFrame(W)

# This disp         


        
相关标签:
2条回答
  • 2021-02-10 10:27

    It is not clear from the question why you would want to use pandas dataframes to store the image. I think this makes things unnecessarily complicated. You may instead directly store the numpy array in binary format and load it again at some point later.

    import numpy as np
    import matplotlib.pyplot as plt
    
    #create an image
    imar = np.array([[[1.,0.],[0.,0.]],
                     [[0.,1.],[0.,1.]],
                     [[0.,0.],[1.,1.]]]).transpose()
    plt.imsave('pic.jpg', imar)
    
    # read the image
    im = plt.imread('pic.jpg')
    # show the image
    plt.imshow(im)
    plt.show()
    
    #save the image array to binary file
    np.save('mypic', im)
    # load the image from binary file
    new_im= np.load('mypic.npy')
    # show the loaded image
    plt.imshow(new_im)
    plt.show()
    

    As a response to the comments below, which turn the question somehow in a different direction, you may surely store the path/name of the image in the dataframe.

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    #create an image
    imar = np.array([[[1.,0.],[0.,0.]],
                     [[0.,1.],[0.,1.]],
                     [[0.,0.],[1.,1.]]]).transpose()
    plt.imsave('pic.jpg', imar)
    
    #create dataframe
    
    df = pd.DataFrame([[0,""]], columns=["Feature1","Feature2"])
    
    # read the image
    im = plt.imread('pic.jpg')
    
    plt.imshow(im)
    plt.show()
    
    #save the image array to binary file
    np.save('mypic.npy', im)
    # store name of image in dataframe
    df.iloc[0,1] = 'mypic.npy'
    #save dataframe
    df.to_csv("mydf.csv")
    del df
    
    #read dataframe from csv
    df = pd.read_csv("mydf.csv")
    # load the image from binary file, given the path from the Dataframe
    new_im= np.load(df["Feature2"][0])
    # show the loaded image
    plt.imshow(new_im)
    plt.show()
    

    Last, you may go along the initally planned way of storing the actual image in a dataframe cell, but instead of writing to csv, you map pickle the dataframe, such that it can be read out just as if it had never been saved before.

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import pickle
    
    #create an image
    imar = np.array([[[1.,0.],[0.,0.]],
                     [[0.,1.],[0.,1.]],
                     [[0.,0.],[1.,1.]]]).transpose()
    plt.imsave('pic.jpg', imar)
    
    #create dataframe
    
    df = pd.DataFrame([[0,""]], columns=["Feature1","Feature2"])
    
    # read the image
    im = plt.imread('pic.jpg')
    
    plt.imshow(im)
    plt.show()
    
    # store the image itself  in dataframe
    df.iloc[0,1] = [im]
    #save dataframe
    pickle.dump(df, file("mydf.pickle", "wb"))
    del df
    
    #read dataframe from pickle
    df = pickle.load(file("mydf.pickle", "rb"))
    
    # show the loaded image from dataframe cell
    plt.imshow(df["Feature2"][0][0])
    plt.show()
    
    0 讨论(0)
  • 2021-02-10 10:41

    How to display images in pandas dataframe

    If you have Pandas column that contains URL or local path you can generate Image column which will display thumbnail or any other image size.

    1. In case you have URLs of images in list.

    You will first need to download images based on image URLs. adImageList contains list of URL of images which you want to add to pandas as column.

    dir_base = os.getcwd() # Get your current directory
    for i, URL in enumerate(adImageList):
                    image_name= '0{}_{}'.format(i+1,'_image.jpg') # This will show for example 01_image.jpg
                    urllib.request.urlretrieve(URL, image_name)
                    local_path_thumb = os.path.join(dir_base , image_name)
                    df[i]['local_image_path']=local_path # adding that locally fetched image path to pandas column
    

    2. In case you have image URLs in separate column in Pandas dataframe. First create function for getting local URL for single image

       get_image_local(URL):            
            image_name= '0{}_{}'.format(i+1,'_image.jpg')
            urllib.request.urlretrieve(URL, image_name)
            local_path_image = os.path.join(dir_base, image_name)
            return (local_path_image)
    

    Than use lambda expression to map that to new column imageLocal:

    df['imageLocal'] = df.URL.map(lambda f: get_image_local(f)) 
    

    df['imageLocal'] should look something like this:

    0 C:\Users\username\Documents\Base_folder\01_image.jpg         
    1 C:\Users\username\Documents\Base_folder\02_image.jpg                          
    2 C:\Users\username\Documents\Base_folder\03_image.jpg
    

    Next 3 PILL functions you can just copy paste:

    import glob
    import random
    import base64
    import pandas as pd
    
    from PIL import Image
    from io import BytesIO
    from IPython.display import HTML
    import io
    
    pd.set_option('display.max_colwidth', -1)
    
    
    def get_thumbnail(path):
        path = "\\\\?\\"+path # This "\\\\?\\" is used to prevent problems with long Windows paths
        i = Image.open(path)    
        return i
    
    def image_base64(im):
        if isinstance(im, str):
            im = get_thumbnail(im)
        with BytesIO() as buffer:
            im.save(buffer, 'jpeg')
            return base64.b64encode(buffer.getvalue()).decode()
    
    def image_formatter(im):
        return f'<img src="data:image/jpeg;base64,{image_base64(im)}">'
    

    We can pass our local image path to get_thumbnail(path) with following:

    df['imagePILL'] = df.imageLocal.map(lambda f: get_thumbnail(f))
    

    And df['imagePILL'] should look like this:

    0    <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=300x400 at 0x265BA323240>
    1    <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=200x150 at 0x265BA3231D0>
    2    <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=300x400 at 0x265BA3238D0>
    

    You can resort pandas dataframe to get your new column in desired position:

    df= df.reindex(sorted(df.columns), axis=1)
    

    And now if you want to view pandas dataframe with resized images just call image_formatter function in IPython.display HTML function:

    HTML(df.to_html(formatters={'imagePILL': image_formatter}, escape=False))
    

    You can use any other way of showing HTML, important thing is to get PIL object inside pandas dataframe.

    0 讨论(0)
提交回复
热议问题