Here is my code for the karger min cut algorithm.. To the best of my knowledge the algorithm i have implemented is right. But I don get the answer right. If someone can check wh
Note, my response is in Python3 as it has been a few years since this post last received a response.
Further iterating upon @sestus' helpful answer above, I wanted to address three features:
Run this algorithm a large number of times (in my case, 100 times) and keep track of the smallest min_cut and its related supervertices. That's what my outside function full_karger() achieves. I am not clever enough to implement this as an internal
from random import randint
from math import log
class KargerMinCut():
# 0: Initialize graph
def __init__(self, graph_file):
# 0.1: Load graph file
self.graph = {}
self.total_edges = 0
self.vertex_count = 0
with open(graph_file, "r") as file:
for line in file:
numbers = [int(x) for x in line.split('\t') if x!='\n']
vertex = numbers[0]
vertex_edges = numbers[1:]
self.graph[vertex] = vertex_edges
self.total_edges+=len(vertex_edges)
self.vertex_count+=1
self.supervertices = {}
for key in self.graph:
self.supervertices[key] = [key]
# 1: Find the minimum cut
def find_min_cut(self):
min_cut = 0
while len(self.graph)>2:
# 1.1: Pick a random edge
v1, v2 = self.pick_random_edge()
self.total_edges -= len(self.graph[v1])
self.total_edges -= len(self.graph[v2])
# 1.2: Merge the edges
self.graph[v1].extend(self.graph[v2])
# 1.3: Update all references to v2 to point to v1
for vertex in self.graph[v2]:
self.graph[vertex].remove(v2)
self.graph[vertex].append(v1)
# 1.4: Remove self loops
self.graph[v1] = [x for x in self.graph[v1] if x != v1]
# 1.5: Update total edges
self.total_edges += len(self.graph[v1])
self.graph.pop(v2)
# 1.6: Update cut groupings
self.supervertices[v1].extend(self.supervertices.pop(v2))
# 1.7: Calc min cut
for edges in self.graph.values():
min_cut = len(edges)
# 1.8: Return min cut and the two supervertices
return min_cut, self.supervertices
# 2: Pick a truly random edge:
def pick_random_edge(self):
rand_edge = randint(0, self.total_edges-1)
for vertex, vertex_edges in self.graph.items():
if len(vertex_edges) < rand_edge:
rand_edge -= len(vertex_edges)
else:
from_vertex = vertex
to_vertex = vertex_edges[rand_edge-1]
return from_vertex, to_vertex
# H.1: Helpful young man who prints our graph
def print_graph(self):
for key in self.graph:
print("{}: {}".format(key, self.graph[key]))
graph = KargerMinCut('kargerMinCut.txt')
def full_karger(iterations):
graph = KargerMinCut('kargerMinCut.txt')
out = graph.find_min_cut()
min_cut = out[0]
supervertices = out[1]
for i in range(iterations):
graph = KargerMinCut('kargerMinCut.txt')
out = graph.find_min_cut()
if out[0] < min_cut:
min_cut = out[0]
supervertices = out[1]
return min_cut, supervertices
out = full_karger(100)
print("min_cut: {}\nsupervertices: {}".format(out[0],out[1]))
This code also works.
import random, copy
data = open("***.txt","r")
G = {}
for line in data:
lst = [int(s) for s in line.split()]
G[lst[0]] = lst[1:]
def choose_random_key(G):
v1 = random.choice(list(G.keys()))
v2 = random.choice(list(G[v1]))
return v1, v2
def karger(G):
length = []
while len(G) > 2:
v1, v2 = choose_random_key(G)
G[v1].extend(G[v2])
for x in G[v2]:
G[x].remove(v2)
G[x].append(v1)
while v1 in G[v1]:
G[v1].remove(v1)
del G[v2]
for key in G.keys():
length.append(len(G[key]))
return length[0]
def operation(n):
i = 0
count = 10000
while i < n:
data = copy.deepcopy(G)
min_cut = karger(data)
if min_cut < count:
count = min_cut
i = i + 1
return count
print(operation(100))
While looking at this post's answers, I came across Joel's comment. According to Karger's algorithm, the edge must be chosen uniformly at random. You can find my implementation which is based on Oscar's answer and Joel's comment below:
class KargerMinCutter:
def __init__(self, graph_file):
self._graph = {}
self._total_edges = 0
with open(graph_file) as file:
for index, line in enumerate(file):
numbers = [int(number) for number in line.split()]
self._graph[numbers[0]] = numbers[1:]
self._total_edges += len(numbers[1:])
def find_min_cut(self):
min_cut = 0
while len(self._graph) > 2:
v1, v2 = self._pick_random_edge()
self._total_edges -= len(self._graph[v1])
self._total_edges -= len(self._graph[v2])
self._graph[v1].extend(self._graph[v2])
for vertex in self._graph[v2]:
self._graph[vertex].remove(v2)
self._graph[vertex].append(v1)
self._graph[v1] = list(filter(lambda v: v != v1, self._graph[v1]))
self._total_edges += len(self._graph[v1])
self._graph.pop(v2)
for edges in self._graph.values():
min_cut = len(edges)
return min_cut
def _pick_random_edge(self):
rand_edge = randint(0, self._total_edges - 1)
for vertex, vertex_edges in self._graph.items():
if len(vertex_edges) <= rand_edge:
rand_edge -= len(vertex_edges)
else:
from_vertex = vertex
to_vertex = vertex_edges[rand_edge]
return from_vertex, to_vertex
I totally agree with the above answers. But when I run your code with Python 3.x, it turns out to produce Code 1. This code sometimes works, but sometimes fails. In fact, as @user_3317704 mentioned above, there is a mistake in your code:
for edge in edgelist:
if edge[0] == edge[1]:
edgelist.remove(edge)
You should not change the items of the list when you do a for-do. It raises mistakes. For your reference, it could be
newEdgeList = edgeList.copy();
for edge in edgeList:
if edge[0] == edge[1]:
newEdgeList.remove(edge);
edgeList = newEdgeList;
As stated by Phil, I had to run my program 100 times. And one more correction in the code was :
for edge in edgelist:
if edge[0] == edge[1]:
edgelist.remove(edge)
This part of the code did not correctly eliminate the self loops. So I had to change the code like :
for i in range((len(edgelist)-1),-1,-1):
if edgelist[i][0] == edgelist[i][1]:
edgelist.remove(edgelist[i])
And this line was not needed. since the target node would be automatically changed to self loop and it would be removed.
edgelist.remove(target_edge)
Then as said earlier, the program was looped for 100 times, and I got the minimum cut by randomization. :)
So Karger's algorithm is a `random alogorithm'. That is, each time you run it it produces a solution which is in no way guaranteed to be best. The general approach is to run it lots of times and keep the best solution. For lots of configurations there will be many solutions which are best or approximately best, so you heuristically find a good solution quickly.
As far as I can see, you are only running the algorithms once. Thus the solution is unlikely to be the optimal one. Try running it 100 times in for loop and holding onto the best solution.