I have a dataframe like
Sr.No ID A B C D
1 Tom Earth English BMW
2 Tom Mars Spanish BMW
Grouping by 'ID'
and apply to_dict
to each group with orient='list'
comes pretty close:
df.groupby('ID').apply(lambda dfg: dfg.to_dict(orient='list')).to_dict()
Out[25]:
{'John': {'A': ['Venus', nan],
'B': ['Portugese', 'German'],
'C': ['Mercedes', 'Audi'],
'D': ['Blue', 'Red'],
'ID': ['John', 'John'],
'Sr.No': [4, 5]},
'Michael': {'A': ['Mercury'],
'B': ['Hindi'],
'C': ['Audi'],
'D': ['Yellow'],
'ID': ['Michael'],
'Sr.No': [3]},
'Tom': {'A': ['Earth', 'Mars'],
'B': ['English', 'Spanish'],
'C': ['BMW', 'BMW'],
'D': [nan, 'Green'],
'ID': ['Tom', 'Tom'],
'Sr.No': [1, 2]}}
It should just be a matter of formatting the result slightly.
Edit: to remove 'ID'
from the dictionaries:
df.groupby('ID').apply(lambda dfg: dfg.drop('ID', axis=1).to_dict(orient='list')).to_dict()
Out[5]:
{'John': {'A': ['Venus', nan],
'B': ['Portugese', 'German'],
'C': ['Mercedes', 'Audi'],
'D': ['Blue', 'Red'],
'Sr.No': [4, 5]},
'Michael': {'A': ['Mercury'],
'B': ['Hindi'],
'C': ['Audi'],
'D': ['Yellow'],
'Sr.No': [3]},
'Tom': {'A': ['Earth', 'Mars'],
'B': ['English', 'Spanish'],
'C': ['BMW', 'BMW'],
'D': [nan, 'Green'],
'Sr.No': [1, 2]}}
You can use groupby
with orient of to_dict as list
and convert the resultant series to a dictionary
.
df.set_index('Sr.No', inplace=True)
df.groupby('ID').apply(lambda x: x.to_dict('list')).reset_index(drop=True).to_dict()
{0: {'C': ['Mercedes', 'Audi'], 'ID': ['John', 'John'], 'A': ['Venus', nan],
'B': ['Portugese', 'German'], 'D': ['Blue', 'Red']},
1: {'C': ['Audi'], 'ID': ['Michael'], 'A': ['Mercury'], 'B': ['Hindi'], 'D': ['Yellow']},
2: {'C': ['BMW', 'BMW'], 'ID': ['Tom', 'Tom'], 'A': ['Earth', 'Mars'],
'B': ['English', 'Spanish'], 'D': [nan, 'Green']}}
Inorder to remove ID
, you can also do:
df.groupby('ID')['A','B','C','D'].apply(lambda x: x.to_dict('list')) \
.reset_index(drop=True).to_dict()