Does anyone know where I could find code for the \"Inverse Error Function?\" Freepascal/Delphi would be preferable but C/C++ would be fine too.
The TMath/DMath library d
Here is what I have from spe. To me it looks like they tried to speed it up by dragging all functions into one big polynomal. Keep in mind this is code from the 386 era
// Extract from package Numlib in the Free Pascal sources (http://www.freepascal.org)
// LGPL-with-static-linking-exception, see original source for exact license.
// Note this is usually compiled in TP mode, not in Delphi mode.
Const highestElement = 20000000;
Type ArbFloat = double; // can be extended too.
ArbInt = Longint;
arfloat0 = array[0..highestelement] of ArbFloat;
function spesgn(x: ArbFloat): ArbInt;
begin
if x<0
then
spesgn:=-1
else
if x=0
then
spesgn:=0
else
spesgn:=1
end; {spesgn}
function spepol(x: ArbFloat; var a: ArbFloat; n: ArbInt): ArbFloat;
var pa : ^arfloat0;
i : ArbInt;
polx : ArbFloat;
begin
pa:=@a;
polx:=0;
for i:=n downto 0 do
polx:=polx*x+pa^[i];
spepol:=polx
end {spepol};
function speerf(x : ArbFloat) : ArbFloat;
const
xup = 6.25;
sqrtpi = 1.7724538509055160;
c : array[1..18] of ArbFloat =
( 1.9449071068178803e0, 4.20186582324414e-2, -1.86866103976769e-2,
5.1281061839107e-3, -1.0683107461726e-3, 1.744737872522e-4,
-2.15642065714e-5, 1.7282657974e-6, -2.00479241e-8,
-1.64782105e-8, 2.0008475e-9, 2.57716e-11,
-3.06343e-11, 1.9158e-12, 3.703e-13,
-5.43e-14, -4.0e-15, 1.2e-15);
d : array[1..17] of ArbFloat =
( 1.4831105640848036e0, -3.010710733865950e-1, 6.89948306898316e-2,
-1.39162712647222e-2, 2.4207995224335e-3, -3.658639685849e-4,
4.86209844323e-5, -5.7492565580e-6, 6.113243578e-7,
-5.89910153e-8, 5.2070091e-9, -4.232976e-10,
3.18811e-11, -2.2361e-12, 1.467e-13,
-9.0e-15, 5.0e-16);
var t, s, s1, s2, x2: ArbFloat;
bovc, bovd, j: ArbInt;
begin
bovc:=sizeof(c) div sizeof(ArbFloat);
bovd:=sizeof(d) div sizeof(ArbFloat);
t:=abs(x);
if t <= 2
then
begin
x2:=sqr(x)-2;
s1:=d[bovd]; s2:=0; j:=bovd-1;
s:=x2*s1-s2+d[j];
while j > 1 do
begin
s2:=s1; s1:=s; j:=j-1;
s:=x2*s1-s2+d[j]
end;
speerf:=(s-s2)*x/2
end
else
if t < xup
then
begin
x2:=2-20/(t+3);
s1:=c[bovc]; s2:=0; j:=bovc-1;
s:=x2*s1-s2+c[j];
while j > 1 do
begin
s2:=s1; s1:=s; j:=j-1;
s:=x2*s1-s2+c[j]
end;
x2:=((s-s2)/(2*t))*exp(-sqr(x))/sqrtpi;
speerf:=(1-x2)*spesgn(x)
end
else
speerf:=spesgn(x)
end; {speerf}
function spemax(a, b: ArbFloat): ArbFloat;
begin
if a>b
then
spemax:=a
else
spemax:=b
end; {spemax}
function speefc(x : ArbFloat) : ArbFloat;
const
xlow = -6.25;
xhigh = 27.28;
c : array[0..22] of ArbFloat =
( 1.455897212750385e-1, -2.734219314954260e-1,
2.260080669166197e-1, -1.635718955239687e-1,
1.026043120322792e-1, -5.480232669380236e-2,
2.414322397093253e-2, -8.220621168415435e-3,
1.802962431316418e-3, -2.553523453642242e-5,
-1.524627476123466e-4, 4.789838226695987e-5,
3.584014089915968e-6, -6.182369348098529e-6,
7.478317101785790e-7, 6.575825478226343e-7,
-1.822565715362025e-7, -7.043998994397452e-8,
3.026547320064576e-8, 7.532536116142436e-9,
-4.066088879757269e-9, -5.718639670776992e-10,
3.328130055126039e-10);
var t, s : ArbFloat;
begin
if x <= xlow
then
speefc:=2
else
if x >= xhigh
then
speefc:=0
else
begin
t:=1-7.5/(abs(x)+3.75);
s:=exp(-x*x)*spepol(t, c[0], sizeof(c) div sizeof(ArbFloat) - 1);
if x < 0
then
speefc:=2-s
else
speefc:=s
end
end {speefc};