Given a set of numbers, divide the numbers into two subsets such that difference between the sum of numbers in two subsets is minimal.
T
Are you sorting your subset into decending order or ascending order?
Think about it like this, the array {1, 3, 5, 8, 9, 25}
if you were to divide, you would have {1,8,9} =18 {3,5,25} =33
If it were sorted into descending order it would work out a lot better
{25,1}=26 {9,8,5,3}=25
So your solution is basically correct, it just needs to make sure to take the largest values first.
EDIT: Read tskuzzy's post. Mine does not work
No, Your algorithm is wrong. Your algo follows a greedy approach. I implemented your approach and it failed over this test case: (You may try here)
A greedy algorithm:
#include<bits/stdc++.h>
#define rep(i,_n) for(int i=0;i<_n;i++)
using namespace std;
#define MXN 55
int a[MXN];
int main() {
//code
int t,n,c;
cin>>t;
while(t--){
cin>>n;
rep(i,n) cin>>a[i];
sort(a, a+n);
reverse(a, a+n);
ll sum1 = 0, sum2 = 0;
rep(i,n){
cout<<a[i]<<endl;
if(sum1<=sum2)
sum1 += a[i];
else
sum2 += a[i];
}
cout<<abs(sum1-sum2)<<endl;
}
return 0;
}
Test case:
1
8
16 14 13 13 12 10 9 3
Wrong Ans: 6
16 13 10 9
14 13 12 3
Correct Ans: 0
16 13 13 3
14 12 10 9
The reason greedy algorithm fails is that it does not consider cases when taking a larger element in current larger sum set and later a much smaller in the larger sum set may result much better results. It always try to minimize current difference without exploring or knowing further possibilities, while in a correct solution you might include an element in a larger set and include a much smaller element later to compensate this difference, same as in above test case.
Correct Solution:
To understand the solution, you will need to understand all below problems in order:
My Code (Same logic as this):
#include<bits/stdc++.h>
#define rep(i,_n) for(int i=0;i<_n;i++)
using namespace std;
#define MXN 55
int arr[MXN];
int dp[MXN][MXN*MXN];
int main() {
//code
int t,N,c;
cin>>t;
while(t--){
rep(i,MXN) fill(dp[i], dp[i]+MXN*MXN, 0);
cin>>N;
rep(i,N) cin>>arr[i];
int sum = accumulate(arr, arr+N, 0);
dp[0][0] = 1;
for(int i=1; i<=N; i++)
for(int j=sum; j>=0; j--)
dp[i][j] |= (dp[i-1][j] | (j>=arr[i-1] ? dp[i-1][j-arr[i-1]] : 0));
int res = sum;
for(int i=0; i<=sum/2; i++)
if(dp[N][i]) res = min(res, abs(i - (sum-i)));
cout<<res<<endl;
}
return 0;
}
I'll convert this problem to subset sum problem
let's take array int[] A = { 10,20,15,5,25,33 };
it should be divided into {25 20 10} and { 33 20 } and answer is 55-53=2
Notations : SUM == sum of whole array
sum1 == sum of subset1
sum2 == sum of subset1
step 1: get sum of whole array SUM=108
step 2: whichever way we divide our array into two part one thing will remain true
sum1+ sum2= SUM
step 3: if our intention is to get minimum sum difference then sum1 and sum2 should be near SUM/2 (example sum1=54 and sum2=54 then diff=0 )
steon 4: let's try combinations
sum1 = 54 AND sum2 = 54 (not possible to divide like this)
sum1 = 55 AND sum2 = 53 (possible and our solution, should break here)
sum1 = 56 AND sum2 = 52
sum1 = 57 AND sum2 = 51 .......so on
pseudo code
SUM=Array.sum();
sum1 = SUM/2;
sum2 = SUM-sum1;
while(true){
if(subSetSuMProblem(A,sum1) && subSetSuMProblem(A,sum2){
print "possible"
break;
}
else{
sum1++;
sum2--;
}
}
Java code for the same
import java.util.ArrayList;
import java.util.List;
public class MinimumSumSubsetPrint {
public static void main(String[] args) {
int[] A = {10, 20, 15, 5, 25, 32};
int sum = 0;
for (int i = 0; i < A.length; i++) {
sum += A[i];
}
subsetSumDynamic(A, sum);
}
private static boolean subsetSumDynamic(int[] A, int sum) {
int n = A.length;
boolean[][] T = new boolean[n + 1][sum + 1];
// sum2[0][0]=true;
for (int i = 0; i <= n; i++) {
T[i][0] = true;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (A[i - 1] > j) {
T[i][j] = T[i - 1][j];
} else {
T[i][j] = T[i - 1][j] || T[i - 1][j - A[i - 1]];
}
}
}
int sum1 = sum / 2;
int sum2 = sum - sum1;
while (true) {
if (T[n][sum1] && T[n][sum2]) {
printSubsets(T, sum1, n, A);
printSubsets(T, sum2, n, A);
break;
} else {
sum1 = sum1 - 1;
sum2 = sum - sum1;
System.out.println(sum1 + ":" + sum2);
}
}
return T[n][sum];
}
private static void printSubsets(boolean[][] T, int sum, int n, int[] A) {
List<Integer> sumvals = new ArrayList<Integer>();
int i = n;
int j = sum;
while (i > 0 && j > 0) {
if (T[i][j] == T[i - 1][j]) {
i--;
} else {
sumvals.add(A[i - 1]);
j = j - A[i - 1];
i--;
}
}
System.out.println();
for (int p : sumvals) {
System.out.print(p + " ");
}
System.out.println();
}
}
int ModDiff(int a, int b)
{
if(a < b)return b - a;
return a-b;
}
int EqDiv(int *a, int l, int *SumI, int *SumE)
{
static int tc = 0;
int min = ModDiff(*SumI,*SumE);
for(int i = 0; i < l; i++)
{
swap(a,0,i);
a++;
int m1 = EqDiv(a, l-1, SumI,SumE);
a--;
swap(a,0,i);
*SumI = *SumI + a[i];
*SumE = *SumE - a[i];
swap(a,0,i);
a++;
int m2 = EqDiv(a,l-1, SumI,SumE);
a--;
swap(a,0,i);
*SumI = *SumI - a[i];
*SumE = *SumE + a[i];
min = min3(min,m1,m2);
}
return min;
}
call the function with SumI =0 and SumE= sumof all the elements in a. This O(n!) solution does compute the way we can divide the given array into 2 parts such the difference is minimum. But definitely not practical due to the n! time complexity looking to improve this using DP.
One small change: reverse the order - start with the largest number and work down. This will minimize the error.
Many answers mentioned about getting an 'approximate' solution in a very acceptable time bound . But since it is asked in an interview , I dont expect they need an approximation algorithm. Also I dont expect they need a naive exponential algorithm either.
Coming to the problem , assuming the maximum value of sum of numbers is known , it can infact be solved in polynomial time using dynamic programming. Refer this link https://people.cs.clemson.edu/~bcdean/dp_practice/dp_4.swf