Select object by color in an image?

前端 未结 1 1841
猫巷女王i
猫巷女王i 2021-02-09 16:08

Is there a way to find object that have specific color (for example red rectangle 100px 50px with white text) and then select that object as it is and cut it to new file? Look a

相关标签:
1条回答
  • 2021-02-09 16:54

    I don't know your real intention, would you like only read the text or do you like also extract the parts? Anyway, I'm going to show you a straight forward and general solution. Take the parts you need, at the end you find the hole code.

    For the hole bunch you need 4 modules:
    cv2 (openCV) for image processing
    numpy to handle special operations on the images
    pytesseract to recognize text (ocr)
    pillow (pil) to prepare the image for pytesseract

    Load und filter

    Your original image:

    First we reduce all colors except red. lower and upper describes the values from BGR (RGB = red, green, blue) we like to filter.

    image = cv.imread("AR87t.jpg")
    
    lower = np.array([0, 0, 200])
    upper = np.array([100, 100, 255])
    shapeMask = cv.inRange(image, lower, upper)
    
    cv.imshow("obj shapeMask", shapeMask)
    cv.waitKey(0)
    

    This shows:


    finding contours
    Next, we find the contours and iterating through. If we find 4 corners, we will do the next stuff...

    cnts = cv.findContours(shapeMask.copy(), cv.RETR_EXTERNAL,
                           cv.CHAIN_APPROX_SIMPLE)[0]
    
    for c in cnts:
        peri = cv.arcLength(c, True)
        approx = cv.approxPolyDP(c, 0.04 * peri, True)
        if len(approx) == 4:
        ....
    



    mask the original
    With boundingRect, we extract x, y, w, h

    (x, y, w, h) = cv.boundingRect(approx)
    cv.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), thickness=5)
    




    ocr on the mask
    And here comes the magic! First we extract the mask parts and export the openCV image to an PIL image. We are then able to run tesseract over.

    el = shapeMask.copy()[y:y + h, x:x + w]
    pil_im = Image.fromarray(el)
    
    cv.imshow("obj", el)
    cv.waitKey(0)
    
    print(pytesseract.image_to_string(pil_im))
    


    this shows you every rectangle as small image. You console will print out:

    L2 = 33,33
    L3 = 44,44
    L1 = 12,22
    



    code

    import cv2 as cv
    import numpy as np
    import pytesseract
    from PIL import Image
    
    
    
    image = cv.imread("AR87t.jpg")
    
    lower = np.array([0, 0, 200])
    upper = np.array([100, 100, 255])
    shapeMask = cv.inRange(image, lower, upper)
    
    cv.imshow("obj shapeMask", shapeMask)
    cv.waitKey(0)
    
    
    cnts = cv.findContours(shapeMask.copy(), cv.RETR_EXTERNAL,
                           cv.CHAIN_APPROX_SIMPLE)[0]
    
    for c in cnts:
        peri = cv.arcLength(c, True)
        approx = cv.approxPolyDP(c, 0.04 * peri, True)
        if len(approx) == 4:
            (x, y, w, h) = cv.boundingRect(approx)
            cv.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), thickness=5)
    
            print("w:%s, y:%s, w:%s, h:%s" % (x, y, w, h))
    
            el = shapeMask.copy()[y:y + h, x:x + w]
            pil_im = Image.fromarray(el)
    
            cv.imshow("obj", el)
            cv.waitKey(0)
    
            print(pytesseract.image_to_string(pil_im))
    
    
    cv.imshow("obj rectangle", image)
    cv.waitKey(0)
    
    0 讨论(0)
提交回复
热议问题