I have small csv that has 6 coordinates from Birmingham England. I read the csv with pandas then transformed it into GeoPandas DataFrame changing my latitude and longitude colu
Try df.unary_union. The function will aggregate points into a single geometry. Jupyter Notebook can plot it
The GeoPandas documentation contains an example on how to add a background to a map (https://geopandas.readthedocs.io/en/latest/gallery/plotting_basemap_background.html), which is explained in more detail below.
You will have to deal with tiles, that are (png) images served through a web server, with a URL like
http://.../Z/X/Y.png
, where Z is the zoom level, and X and Y identify the tile
And geopandas's doc shows how to set tiles as backgrounds for your plots, fetching the correct ones and doing all the otherwise difficult job of spatial syncing, etc...
Assuming GeoPandas is already installed, you need the contextily package in addition. If you are under windows, you may want to pick a look at How to install Contextily?
Use case
Create a python script and define the contextily helper function
import contextily as ctx
def add_basemap(ax, zoom, url='http://tile.stamen.com/terrain/tileZ/tileX/tileY.png'):
xmin, xmax, ymin, ymax = ax.axis()
basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url)
ax.imshow(basemap, extent=extent, interpolation='bilinear')
# restore original x/y limits
ax.axis((xmin, xmax, ymin, ymax))
and play
import matplotlib.pyplot as plt
from shapely.geometry import Point
import geopandas as gpd
import pandas as pd
# Let's define our raw data, whose epsg is 4326
df = pd.DataFrame({
'LAT' :[-22.266415, -20.684157],
'LONG' :[166.452764, 164.956089],
})
df['coords'] = list(zip(df.LONG, df.LAT))
# ... turn them into geodataframe, and convert our
# epsg into 3857, since web map tiles are typically
# provided as such.
geo_df = gpd.GeoDataFrame(
df, crs ={'init': 'epsg:4326'},
geometry = df['coords'].apply(Point)
).to_crs(epsg=3857)
# ... and make the plot
ax = geo_df.plot(
figsize= (5, 5),
alpha = 1
)
add_basemap(ax, zoom=10)
ax.set_axis_off()
plt.title('Kaledonia : From Hienghène to Nouméa')
plt.show()
zoom
to find the good resolution for the map. E.g./I.e. :
... and such resolutions implicitly call for changing the x/y limits.
Just want to add the use case concerning zooming whereby the basemap is updated according to the new xlim
and ylim
coordinates. A solution I have come up with is:
ax
that can detect xlim_changed
and ylim_changed
plot_area
calling ax.get_xlim()
and ax.get_ylim()
ax
and re-plot the basemap and any other dataExample for a world map showing the capitals. You notice when you zoom in the resolution of the map is being updated.
import geopandas as gpd
import matplotlib.pyplot as plt
import contextily as ctx
figsize = (12, 10)
osm_url = 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png'
EPSG_OSM = 3857
EPSG_WGS84 = 4326
class MapTools:
def __init__(self):
self.cities = gpd.read_file(
gpd.datasets.get_path('naturalearth_cities'))
self.cities.crs = EPSG_WGS84
self.cities = self.convert_to_osm(self.cities)
self.fig, self.ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
self.callbacks_connect()
# get extent of the map for all cities
self.cities.plot(ax=self.ax)
self.plot_area = self.ax.axis()
def convert_to_osm(self, df):
return df.to_crs(epsg=EPSG_OSM)
def callbacks_connect(self):
self.zoomcallx = self.ax.callbacks.connect(
'xlim_changed', self.on_limx_change)
self.zoomcally = self.ax.callbacks.connect(
'ylim_changed', self.on_limy_change)
self.x_called = False
self.y_called = False
def callbacks_disconnect(self):
self.ax.callbacks.disconnect(self.zoomcallx)
self.ax.callbacks.disconnect(self.zoomcally)
def on_limx_change(self, _):
self.x_called = True
if self.y_called:
self.on_lim_change()
def on_limy_change(self, _):
self.y_called = True
if self.x_called:
self.on_lim_change()
def on_lim_change(self):
xlim = self.ax.get_xlim()
ylim = self.ax.get_ylim()
self.plot_area = (*xlim, *ylim)
self.blit_map()
def add_base_map_osm(self):
if abs(self.plot_area[1] - self.plot_area[0]) < 100:
zoom = 13
else:
zoom = 'auto'
try:
basemap, extent = ctx.bounds2img(
self.plot_area[0], self.plot_area[2],
self.plot_area[1], self.plot_area[3],
zoom=zoom,
url=osm_url,)
self.ax.imshow(basemap, extent=extent, interpolation='bilinear')
except Exception as e:
print(f'unable to load map: {e}')
def blit_map(self):
self.ax.cla()
self.callbacks_disconnect()
cities = self.cities.cx[
self.plot_area[0]:self.plot_area[1],
self.plot_area[2]:self.plot_area[3]]
cities.plot(ax=self.ax, color='red', markersize=3)
print('*'*80)
print(self.plot_area)
print(f'{len(cities)} cities in plot area')
self.add_base_map_osm()
self.callbacks_connect()
@staticmethod
def show():
plt.show()
def main():
map_tools = MapTools()
map_tools.show()
if __name__ == '__main__':
main()
Runs on Linux Python3.8 with following pip installs
affine==2.3.0
attrs==19.3.0
autopep8==1.4.4
Cartopy==0.17.0
certifi==2019.11.28
chardet==3.0.4
Click==7.0
click-plugins==1.1.1
cligj==0.5.0
contextily==1.0rc2
cycler==0.10.0
descartes==1.1.0
Fiona==1.8.11
geographiclib==1.50
geopandas==0.6.2
geopy==1.20.0
idna==2.8
joblib==0.14.0
kiwisolver==1.1.0
matplotlib==3.1.2
mercantile==1.1.2
more-itertools==8.0.0
munch==2.5.0
numpy==1.17.4
packaging==19.2
pandas==0.25.3
Pillow==6.2.1
pluggy==0.13.1
py==1.8.0
pycodestyle==2.5.0
pyparsing==2.4.5
pyproj==2.4.1
pyshp==2.1.0
pytest==5.3.1
python-dateutil==2.8.1
pytz==2019.3
rasterio==1.1.1
requests==2.22.0
Rtree==0.9.1
Shapely==1.6.4.post2
six==1.13.0
snuggs==1.4.7
urllib3==1.25.7
wcwidth==0.1.7
Note especially requirement for contextily==1.0rc2
On windows I use Conda (P3.7.3) and don't forget to set the User variables:
GDAL c:\Users\<username>\Anaconda3\envs\<your environment>\Library\share\gdal
PROJLIB c:\Users\<username>\Anaconda3\envs\<your environment>\Library\share