Plotting a map using geopandas and matplotlib

后端 未结 3 1166

I have small csv that has 6 coordinates from Birmingham England. I read the csv with pandas then transformed it into GeoPandas DataFrame changing my latitude and longitude colu

相关标签:
3条回答
  • 2021-02-09 15:07

    Try df.unary_union. The function will aggregate points into a single geometry. Jupyter Notebook can plot it

    0 讨论(0)
  • 2021-02-09 15:15

    The GeoPandas documentation contains an example on how to add a background to a map (https://geopandas.readthedocs.io/en/latest/gallery/plotting_basemap_background.html), which is explained in more detail below.


    You will have to deal with tiles, that are (png) images served through a web server, with a URL like

    http://.../Z/X/Y.png, where Z is the zoom level, and X and Y identify the tile

    And geopandas's doc shows how to set tiles as backgrounds for your plots, fetching the correct ones and doing all the otherwise difficult job of spatial syncing, etc...


    Installation

    Assuming GeoPandas is already installed, you need the contextily package in addition. If you are under windows, you may want to pick a look at How to install Contextily?

    Use case

    Create a python script and define the contextily helper function

    import contextily as ctx
    
    def add_basemap(ax, zoom, url='http://tile.stamen.com/terrain/tileZ/tileX/tileY.png'):
        xmin, xmax, ymin, ymax = ax.axis()
        basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, url=url)
        ax.imshow(basemap, extent=extent, interpolation='bilinear')
        # restore original x/y limits
        ax.axis((xmin, xmax, ymin, ymax))
    

    and play

    import matplotlib.pyplot as plt
    from shapely.geometry import Point
    import geopandas as gpd
    import pandas as pd
    
    # Let's define our raw data, whose epsg is 4326
    df = pd.DataFrame({
        'LAT'  :[-22.266415, -20.684157],
        'LONG' :[166.452764, 164.956089],
    })
    df['coords'] = list(zip(df.LONG, df.LAT))
    
    # ... turn them into geodataframe, and convert our
    # epsg into 3857, since web map tiles are typically
    # provided as such.
    geo_df = gpd.GeoDataFrame(
        df, crs  ={'init': 'epsg:4326'},
        geometry = df['coords'].apply(Point)
    ).to_crs(epsg=3857)
    
    # ... and make the plot
    ax = geo_df.plot(
        figsize= (5, 5),
        alpha  = 1
    )
    add_basemap(ax, zoom=10)
    ax.set_axis_off()
    plt.title('Kaledonia : From Hienghène to Nouméa')
    plt.show()
    


    Note: you can play with the zoom to find the good resolution for the map. E.g./I.e. :

    ... and such resolutions implicitly call for changing the x/y limits.

    0 讨论(0)
  • 2021-02-09 15:18

    Just want to add the use case concerning zooming whereby the basemap is updated according to the new xlim and ylim coordinates. A solution I have come up with is:

    • First set callbacks on the ax that can detect xlim_changed and ylim_changed
    • Once both have been detected as changed get the new plot_area calling ax.get_xlim() and ax.get_ylim()
    • Then clear the ax and re-plot the basemap and any other data

    Example for a world map showing the capitals. You notice when you zoom in the resolution of the map is being updated.

    import geopandas as gpd
    import matplotlib.pyplot as plt
    import contextily as ctx
    
    
    figsize = (12, 10)
    osm_url = 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png'
    EPSG_OSM = 3857
    EPSG_WGS84 = 4326
    
    class MapTools:
        def __init__(self):
            self.cities = gpd.read_file(
                gpd.datasets.get_path('naturalearth_cities'))
            self.cities.crs = EPSG_WGS84
            self.cities = self.convert_to_osm(self.cities)
    
            self.fig, self.ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
            self.callbacks_connect()
    
            # get extent of the map for all cities
            self.cities.plot(ax=self.ax)
            self.plot_area = self.ax.axis()
    
        def convert_to_osm(self, df):
            return df.to_crs(epsg=EPSG_OSM)
    
        def callbacks_connect(self):
            self.zoomcallx = self.ax.callbacks.connect(
                'xlim_changed', self.on_limx_change)
            self.zoomcally = self.ax.callbacks.connect(
                'ylim_changed', self.on_limy_change)
    
            self.x_called = False
            self.y_called = False
    
        def callbacks_disconnect(self):
            self.ax.callbacks.disconnect(self.zoomcallx)
            self.ax.callbacks.disconnect(self.zoomcally)
    
        def on_limx_change(self, _):
            self.x_called = True
            if self.y_called:
                self.on_lim_change()
    
        def on_limy_change(self, _):
            self.y_called = True
            if self.x_called:
                self.on_lim_change()
    
        def on_lim_change(self):
            xlim = self.ax.get_xlim()
            ylim = self.ax.get_ylim()
            self.plot_area = (*xlim, *ylim)
            self.blit_map()
    
        def add_base_map_osm(self):
            if abs(self.plot_area[1] - self.plot_area[0]) < 100:
                zoom = 13
    
            else:
                zoom = 'auto'
    
            try:
                basemap, extent = ctx.bounds2img(
                    self.plot_area[0], self.plot_area[2],
                    self.plot_area[1], self.plot_area[3],
                    zoom=zoom,
                    url=osm_url,)
                self.ax.imshow(basemap, extent=extent, interpolation='bilinear')
    
            except Exception as e:
                print(f'unable to load map: {e}')
    
        def blit_map(self):
            self.ax.cla()
            self.callbacks_disconnect()
            cities = self.cities.cx[
                self.plot_area[0]:self.plot_area[1],
                self.plot_area[2]:self.plot_area[3]]
            cities.plot(ax=self.ax, color='red', markersize=3)
    
            print('*'*80)
            print(self.plot_area)
            print(f'{len(cities)} cities in plot area')
    
            self.add_base_map_osm()
            self.callbacks_connect()
    
        @staticmethod
        def show():
            plt.show()
    
    
    def main():
        map_tools = MapTools()
        map_tools.show()
    
    if __name__ == '__main__':
        main()
    

    Runs on Linux Python3.8 with following pip installs

    affine==2.3.0
    attrs==19.3.0
    autopep8==1.4.4
    Cartopy==0.17.0
    certifi==2019.11.28
    chardet==3.0.4
    Click==7.0
    click-plugins==1.1.1
    cligj==0.5.0
    contextily==1.0rc2
    cycler==0.10.0
    descartes==1.1.0
    Fiona==1.8.11
    geographiclib==1.50
    geopandas==0.6.2
    geopy==1.20.0
    idna==2.8
    joblib==0.14.0
    kiwisolver==1.1.0
    matplotlib==3.1.2
    mercantile==1.1.2
    more-itertools==8.0.0
    munch==2.5.0
    numpy==1.17.4
    packaging==19.2
    pandas==0.25.3
    Pillow==6.2.1
    pluggy==0.13.1
    py==1.8.0
    pycodestyle==2.5.0
    pyparsing==2.4.5
    pyproj==2.4.1
    pyshp==2.1.0
    pytest==5.3.1
    python-dateutil==2.8.1
    pytz==2019.3
    rasterio==1.1.1
    requests==2.22.0
    Rtree==0.9.1
    Shapely==1.6.4.post2
    six==1.13.0
    snuggs==1.4.7
    urllib3==1.25.7
    wcwidth==0.1.7
    

    Note especially requirement for contextily==1.0rc2

    On windows I use Conda (P3.7.3) and don't forget to set the User variables:

    GDAL c:\Users\<username>\Anaconda3\envs\<your environment>\Library\share\gdal

    PROJLIB c:\Users\<username>\Anaconda3\envs\<your environment>\Library\share

    0 讨论(0)
提交回复
热议问题