Get cpu cycles of LLVM IR using CostModel

后端 未结 1 1489
一向
一向 2021-02-09 14:39

Since LLVM 3.0, there is CostModel.cpp under Analysis directory. Referring to its doc, it says

This file defines the cost model analysis. It provides a ve

相关标签:
1条回答
  • 2021-02-09 15:01

    Below is the sample which is working for me :

    Main Function File to test

    #include <iostream>
    #include <string>
    #include <llvm/Support/MemoryBuffer.h>
    #include <llvm/Support/ErrorOr.h>
    #include <llvm/IR/Module.h>
    #include <llvm/IR/LLVMContext.h>
    #include <llvm/Bitcode/BitcodeReader.h>
    #include <llvm/Support/raw_ostream.h>
    #include <llvm/Analysis/Passes.h>
    #include <llvm/Analysis/TargetTransformInfo.h>
    #include <llvm/Analysis/CostModelDummy.h>
    #include "llvm/IRReader/IRReader.h"
    #include "llvm/Support/SourceMgr.h"
    
    using namespace llvm;
    
    int main(int argc, char *argv[]) {
        StringRef filename = "FILE_NAME";
        LLVMContext context;
    
        ErrorOr<std::unique_ptr<MemoryBuffer>> fileOrErr =
            MemoryBuffer::getFileOrSTDIN(filename);
        if (std::error_code ec = fileOrErr.getError()) {
            std::cerr << " Error opening input file: " + ec.message() << std::endl;
            return 2;
        }
        Expected<std::unique_ptr<Module>> moduleOrErr =
            parseBitcodeFile(fileOrErr.get()->getMemBufferRef(), context);
        if (std::error_code ec = fileOrErr.getError()) {
            std::cerr << "Error reading Moduule: " + ec.message() << std::endl;
            return 3;
        }
    
        llvm::SMDiagnostic Err;
        llvm::LLVMContext Context;
        std::unique_ptr<llvm::Module> m(parseIRFile(filename, Err, Context));
        if (!m)
          return 4;
    
        std::cout << "Successfully read Module:" << std::endl;
        std::cout << " Name: " << m->getName().str() << std::endl;
        std::cout << " Target triple: " << m->getTargetTriple() << std::endl;
    
        for (auto iter1 = m->getFunctionList().begin(); iter1 != m->getFunctionList().end(); iter1++) {
            Function &f = *iter1;
    
            CostModelAnalysisDummy obj;
            std::cout << " STEP: 1 Function: " << f.getName().str() << std::endl;
            obj.runOnFunction(f);
    
            std::cout << " STEP: 2 Function: " << f.getName().str() << std::endl;
            for (auto iter2 = f.getBasicBlockList().begin(); iter2 != f.getBasicBlockList().end(); iter2++) {
                BasicBlock &bb = *iter2;
                std::cout << "  BasicBlock: " << bb.getName().str() << std::endl;
                for (auto iter3 = bb.begin(); iter3 != bb.end(); iter3++) {
                    Instruction &inst = *iter3;
    
                    std::cout << std::endl << " Number of Cycles" << obj.getInstructionCost(&inst) << std::endl;
    
                    std::cout << "   Instruction " << &inst << " : " << inst.getOpcodeName();
    
                    unsigned int  i = 0;
                    unsigned int opnt_cnt = inst.getNumOperands();
                    for (; i < opnt_cnt; ++i)
                    {
                        Value *opnd = inst.getOperand(i);
                        std::string o;
                        //          raw_string_ostream os(o);
                        //         opnd->print(os);
                        //opnd->printAsOperand(os, true, m);
                        if (opnd->hasName()) {
                            o = opnd->getName();
                            std::cout << " " << o << ",";
                        }
                        else {
                            std::cout << " ptr" << opnd << ",";
                        }
                    }
                    std::cout << std::endl;
                }
            }
        }
        return 0;
    }
    

    Source File

    //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
    //
    //                     The LLVM Compiler Infrastructure
    //
    // This file is distributed under the University of Illinois Open Source
    // License. See LICENSE.TXT for details.
    //
    //===----------------------------------------------------------------------===//
    //
    // This file defines the cost model analysis. It provides a very basic cost
    // estimation for LLVM-IR. This analysis uses the services of the codegen
    // to approximate the cost of any IR instruction when lowered to machine
    // instructions. The cost results are unit-less and the cost number represents
    // the throughput of the machine assuming that all loads hit the cache, all
    // branches are predicted, etc. The cost numbers can be added in order to
    // compare two or more transformation alternatives.
    //
    //===----------------------------------------------------------------------===//
    
    #include "llvm/Analysis/CostModelDummy.h"
    
    using namespace llvm;
    
    // Register this pass.
    char CostModelAnalysisDummy::ID = 0;
    static const char cm_name[] = "Cost Model Analysis";
    INITIALIZE_PASS_BEGIN(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)
    INITIALIZE_PASS_END(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)
    
    
    static cl::opt<bool> EnableReduxCost("costmodel-reduxcost-Dummy", cl::init(false),
        cl::Hidden,
        cl::desc("Recognize reduction patterns."));
    
    FunctionPass *createCostModelAnalysisDummyPass() {
      return new CostModelAnalysisDummy();
    }
    
    void
    CostModelAnalysisDummy::getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }
    
    bool
    CostModelAnalysisDummy::runOnFunction(Function &F) {
     this->F = &F;
     PMDataManager *DM = getAsPMDataManager();
     AnalysisResolver *AR = new AnalysisResolver(*DM);
     setResolver(AR);
     setTopLevelManager(new CostModelAnalysisDummy());
    
    
     recordAvailableAnalysis(new TargetTransformInfoWrapperPass());
     auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
     TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;
    
     return false;
    }
    
    static bool isReverseVectorMask(ArrayRef<int> Mask) {
      for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
        if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i))
          return false;
      return true;
    }
    
    static bool isSingleSourceVectorMask(ArrayRef<int> Mask) {
      bool Vec0 = false;
      bool Vec1 = false;
      for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) {
        if (Mask[i] >= 0) {
          if ((unsigned)Mask[i] >= NumVecElts)
            Vec1 = true;
          else
            Vec0 = true;
        }
      }
      return !(Vec0 && Vec1);
    }
    
    static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) {
      for (unsigned i = 0; i < Mask.size(); ++i)
        if (Mask[i] > 0)
          return false;
      return true;
    }
    
    static bool isAlternateVectorMask(ArrayRef<int> Mask) {
      bool isAlternate = true;
      unsigned MaskSize = Mask.size();
    
      // Example: shufflevector A, B, <0,5,2,7>
      for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
        if (Mask[i] < 0)
          continue;
        isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
      }
    
      if (isAlternate)
        return true;
    
      isAlternate = true;
      // Example: shufflevector A, B, <4,1,6,3>
      for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
        if (Mask[i] < 0)
          continue;
        isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
      }
    
      return isAlternate;
    }
    
    static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
      TargetTransformInfo::OperandValueKind OpInfo =
          TargetTransformInfo::OK_AnyValue;
    
      // Check for a splat of a constant or for a non uniform vector of constants.
      if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
        OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
        if (cast<Constant>(V)->getSplatValue() != nullptr)
          OpInfo = TargetTransformInfo::OK_UniformConstantValue;
      }
    
      // Check for a splat of a uniform value. This is not loop aware, so return
      // true only for the obviously uniform cases (argument, globalvalue)
      const Value *Splat = getSplatValue(V);
      if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
        OpInfo = TargetTransformInfo::OK_UniformValue;
    
      return OpInfo;
    }
    
    static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
                                         unsigned Level) {
      // We don't need a shuffle if we just want to have element 0 in position 0 of
      // the vector.
      if (!SI && Level == 0 && IsLeft)
        return true;
      else if (!SI)
        return false;
    
      SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
    
      // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
      // we look at the left or right side.
      for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
        Mask[i] = val;
    
      SmallVector<int, 16> ActualMask = SI->getShuffleMask();
      return Mask == ActualMask;
    }
    
    static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
                                              unsigned Level, unsigned NumLevels) {
      // Match one level of pairwise operations.
      // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
      //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
      // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
      //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
      // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
      if (BinOp == nullptr)
        return false;
    
      assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
    
      unsigned Opcode = BinOp->getOpcode();
      Value *L = BinOp->getOperand(0);
      Value *R = BinOp->getOperand(1);
    
      ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
      if (!LS && Level)
        return false;
      ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
      if (!RS && Level)
        return false;
    
      // On level 0 we can omit one shufflevector instruction.
      if (!Level && !RS && !LS)
        return false;
    
      // Shuffle inputs must match.
      Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
      Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
      Value *NextLevelOp = nullptr;
      if (NextLevelOpR && NextLevelOpL) {
        // If we have two shuffles their operands must match.
        if (NextLevelOpL != NextLevelOpR)
          return false;
    
        NextLevelOp = NextLevelOpL;
      } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
        // On the first level we can omit the shufflevector <0, undef,...>. So the
        // input to the other shufflevector <1, undef> must match with one of the
        // inputs to the current binary operation.
        // Example:
        //  %NextLevelOpL = shufflevector %R, <1, undef ...>
        //  %BinOp        = fadd          %NextLevelOpL, %R
        if (NextLevelOpL && NextLevelOpL != R)
          return false;
        else if (NextLevelOpR && NextLevelOpR != L)
          return false;
    
        NextLevelOp = NextLevelOpL ? R : L;
      } else
        return false;
    
      // Check that the next levels binary operation exists and matches with the
      // current one.
      BinaryOperator *NextLevelBinOp = nullptr;
      if (Level + 1 != NumLevels) {
        if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
          return false;
        else if (NextLevelBinOp->getOpcode() != Opcode)
          return false;
      }
    
      // Shuffle mask for pairwise operation must match.
      if (matchPairwiseShuffleMask(LS, true, Level)) {
        if (!matchPairwiseShuffleMask(RS, false, Level))
          return false;
      } else if (matchPairwiseShuffleMask(RS, true, Level)) {
        if (!matchPairwiseShuffleMask(LS, false, Level))
          return false;
      } else
        return false;
    
      if (++Level == NumLevels)
        return true;
    
      // Match next level.
      return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
    }
    
    static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
                                       unsigned &Opcode, Type *&Ty) {
      if (!EnableReduxCost)
        return false;
    
      // Need to extract the first element.
      ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
      unsigned Idx = ~0u;
      if (CI)
        Idx = CI->getZExtValue();
      if (Idx != 0)
        return false;
    
      BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
      if (!RdxStart)
        return false;
    
      Type *VecTy = ReduxRoot->getOperand(0)->getType();
      unsigned NumVecElems = VecTy->getVectorNumElements();
      if (!isPowerOf2_32(NumVecElems))
        return false;
    
      // We look for a sequence of shuffle,shuffle,add triples like the following
      // that builds a pairwise reduction tree.
      //
      //  (X0, X1, X2, X3)
      //   (X0 + X1, X2 + X3, undef, undef)
      //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
      //
      // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
      //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
      // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
      //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
      // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
      // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
      //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
      // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
      //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
      // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
      // %r = extractelement <4 x float> %bin.rdx8, i32 0
      if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
        return false;
    
      Opcode = RdxStart->getOpcode();
      Ty = VecTy;
    
      return true;
    }
    
    static std::pair<Value *, ShuffleVectorInst *>
    getShuffleAndOtherOprd(BinaryOperator *B) {
    
      Value *L = B->getOperand(0);
      Value *R = B->getOperand(1);
      ShuffleVectorInst *S = nullptr;
    
      if ((S = dyn_cast<ShuffleVectorInst>(L)))
        return std::make_pair(R, S);
    
      S = dyn_cast<ShuffleVectorInst>(R);
      return std::make_pair(L, S);
    }
    
    static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
                                              unsigned &Opcode, Type *&Ty) {
      if (!EnableReduxCost)
        return false;
    
      // Need to extract the first element.
      ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
      unsigned Idx = ~0u;
      if (CI)
        Idx = CI->getZExtValue();
      if (Idx != 0)
        return false;
    
      BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
      if (!RdxStart)
        return false;
      unsigned RdxOpcode = RdxStart->getOpcode();
    
      Type *VecTy = ReduxRoot->getOperand(0)->getType();
      unsigned NumVecElems = VecTy->getVectorNumElements();
      if (!isPowerOf2_32(NumVecElems))
        return false;
    
      // We look for a sequence of shuffles and adds like the following matching one
      // fadd, shuffle vector pair at a time.
      //
      // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
      //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
      // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
      // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
      //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
      // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
      // %r = extractelement <4 x float> %bin.rdx8, i32 0
    
      unsigned MaskStart = 1;
      Value *RdxOp = RdxStart;
      SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
      unsigned NumVecElemsRemain = NumVecElems;
      while (NumVecElemsRemain - 1) {
        // Check for the right reduction operation.
        BinaryOperator *BinOp;
        if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
          return false;
        if (BinOp->getOpcode() != RdxOpcode)
          return false;
    
        Value *NextRdxOp;
        ShuffleVectorInst *Shuffle;
        std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
    
        // Check the current reduction operation and the shuffle use the same value.
        if (Shuffle == nullptr)
          return false;
        if (Shuffle->getOperand(0) != NextRdxOp)
          return false;
    
        // Check that shuffle masks matches.
        for (unsigned j = 0; j != MaskStart; ++j)
          ShuffleMask[j] = MaskStart + j;
        // Fill the rest of the mask with -1 for undef.
        std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
    
        SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
        if (ShuffleMask != Mask)
          return false;
    
        RdxOp = NextRdxOp;
        NumVecElemsRemain /= 2;
        MaskStart *= 2;
      }
    
      Opcode = RdxOpcode;
      Ty = VecTy;
      return true;
    }
    
    unsigned CostModelAnalysisDummy::getInstructionCost(const Instruction *I) const {
    
      if (!TTI)
        return -1;
    
      switch (I->getOpcode()) {
      case Instruction::GetElementPtr:
        return TTI->getUserCost(I);
    
      case Instruction::Ret:
      case Instruction::PHI:
      case Instruction::Br: {
        return TTI->getCFInstrCost(I->getOpcode());
      }
      case Instruction::Add:
      case Instruction::FAdd:
      case Instruction::Sub:
      case Instruction::FSub:
      case Instruction::Mul:
      case Instruction::FMul:
      case Instruction::UDiv:
      case Instruction::SDiv:
      case Instruction::FDiv:
      case Instruction::URem:
      case Instruction::SRem:
      case Instruction::FRem:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        TargetTransformInfo::OperandValueKind Op1VK =
          getOperandInfo(I->getOperand(0));
        TargetTransformInfo::OperandValueKind Op2VK =
          getOperandInfo(I->getOperand(1));
        SmallVector<const Value*, 2> Operands(I->operand_values()); 
        return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
                                           Op2VK, TargetTransformInfo::OP_None, 
                                           TargetTransformInfo::OP_None, 
                                           Operands);
      }
      case Instruction::Select: {
        const SelectInst *SI = cast<SelectInst>(I);
        Type *CondTy = SI->getCondition()->getType();
        return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
      }
      case Instruction::ICmp:
      case Instruction::FCmp: {
        Type *ValTy = I->getOperand(0)->getType();
        return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
      }
      case Instruction::Store: {
        const StoreInst *SI = cast<StoreInst>(I);
        Type *ValTy = SI->getValueOperand()->getType();
        return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
                                     SI->getAlignment(),
                                     SI->getPointerAddressSpace());
      }
      case Instruction::Load: {
        const LoadInst *LI = cast<LoadInst>(I);
        return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
                                     LI->getAlignment(),
                                     LI->getPointerAddressSpace());
      }
      case Instruction::ZExt:
      case Instruction::SExt:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::FPExt:
      case Instruction::PtrToInt:
      case Instruction::IntToPtr:
      case Instruction::SIToFP:
      case Instruction::UIToFP:
      case Instruction::Trunc:
      case Instruction::FPTrunc:
      case Instruction::BitCast:
      case Instruction::AddrSpaceCast: {
        Type *SrcTy = I->getOperand(0)->getType();
        return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
      }
      case Instruction::ExtractElement: {
        const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
        ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
        unsigned Idx = -1;
        if (CI)
          Idx = CI->getZExtValue();
    
        // Try to match a reduction sequence (series of shufflevector and vector
        // adds followed by a extractelement).
        unsigned ReduxOpCode;
        Type *ReduxType;
    
        if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
          return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, false);
        else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
          return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, true);
    
        return TTI->getVectorInstrCost(I->getOpcode(),
                                       EEI->getOperand(0)->getType(), Idx);
      }
      case Instruction::InsertElement: {
        const InsertElementInst * IE = cast<InsertElementInst>(I);
        ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
        unsigned Idx = -1;
        if (CI)
          Idx = CI->getZExtValue();
        return TTI->getVectorInstrCost(I->getOpcode(),
                                       IE->getType(), Idx);
      }
      case Instruction::ShuffleVector: {
        const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
        Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
        unsigned NumVecElems = VecTypOp0->getVectorNumElements();
        SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
    
        if (NumVecElems == Mask.size()) {
          if (isReverseVectorMask(Mask))
            return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
                                       0, nullptr);
          if (isAlternateVectorMask(Mask))
            return TTI->getShuffleCost(TargetTransformInfo::SK_SELECT,
                                       VecTypOp0, 0, nullptr);
    
          if (isZeroEltBroadcastVectorMask(Mask))
            return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast,
                                       VecTypOp0, 0, nullptr);
    
          if (isSingleSourceVectorMask(Mask))
            return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
                                       VecTypOp0, 0, nullptr);
    
          return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
                                     VecTypOp0, 0, nullptr);
        }
    
        return -1;
      }
      case Instruction::Call:
        if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
          SmallVector<Value *, 4> Args;
          for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
            Args.push_back(II->getArgOperand(J));
    
          FastMathFlags FMF;
          if (auto *FPMO = dyn_cast<FPMathOperator>(II))
            FMF = FPMO->getFastMathFlags();
    
          return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
                                            Args, FMF);
        }
        return -1;
      default:
        // We don't have any information on this instruction.
        return -1;
      }
    }
    
    void CostModelAnalysisDummy::print(raw_ostream &OS, const Module*) const {
      if (!F)
        return;
    
      for (BasicBlock &B : *F) {
        for (Instruction &Inst : B) {
          unsigned Cost = getInstructionCost(&Inst);
          if (Cost != (unsigned)-1)
            OS << "Cost Model: Found an estimated cost of " << Cost;
          else
            OS << "Cost Model: Unknown cost";
    
          OS << " for instruction: " << Inst << "\n";
        }
      }
    }
    

    Header File

    #include "llvm/ADT/STLExtras.h"
    #include "llvm/Analysis/Passes.h"
    #include "llvm/Analysis/TargetTransformInfo.h"
    #include "llvm/Analysis/VectorUtils.h"
    #include "llvm/IR/Function.h"
    #include "llvm/IR/Instructions.h"
    #include "llvm/IR/IntrinsicInst.h"
    #include "llvm/IR/Value.h"
    #include "llvm/Pass.h"
    #include "llvm/Support/CommandLine.h"
    #include "llvm/Support/Debug.h"
    #include "llvm/Support/raw_ostream.h"
    #include <iostream>
    #include "llvm/IR/LegacyPassManagers.h"
    
    using namespace llvm;
    
    
    #define CM_NAME "cost-model-sanji"
    #define DEBUG_TYPE CM_NAME
    
        class CostModelAnalysisDummy : public PMDataManager, public FunctionPass, public PMTopLevelManager {
    
        public:
            static char ID; // Class identification, replacement for typeinfo
            CostModelAnalysisDummy() : FunctionPass(ID), PMDataManager(), PMTopLevelManager(new FPPassManager()), F(nullptr), TTI(nullptr) {
                llvm::initializeCostModelAnalysisDummyPass(
                    *PassRegistry::getPassRegistry());
            }
    
            /// Returns the expected cost of the instruction.
            /// Returns -1 if the cost is unknown.
            /// Note, this method does not cache the cost calculation and it
            /// can be expensive in some cases.
            unsigned getInstructionCost(const Instruction *I) const;
            bool runOnFunction(Function &F) override;
    
            PMDataManager *getAsPMDataManager() override { return this; }
            Pass *getAsPass() override { return this; }
    
            PassManagerType getTopLevelPassManagerType() override {
                return PMT_BasicBlockPassManager;
            }
    
            FPPassManager *getContainedManager(unsigned N) {
                assert(N < PassManagers.size() && "Pass number out of range!");
                FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
                return FP;
            }
        private:
            void getAnalysisUsage(AnalysisUsage &AU) const override;
    
            void print(raw_ostream &OS, const Module*) const override;
    
            /// The function that we analyze.
            Function *F;
            /// Target information.
            const TargetTransformInfo *TTI;
        };
    
        FunctionPass *createCostModelAnalysisDummyPass();
    
    0 讨论(0)
提交回复
热议问题