What\'s the efficient way to multiply two arrays and get sum of multiply values in Ruby? I have two arrays in Ruby:
array_A = [1, 2, 1, 4, 5, 3, 2, 6, 5, 8, 9]
a
EDIT: Vector is not fastest (Marc Bollinger is totally right).
Here is the modified code with vector and n-times:
require 'benchmark'
require 'matrix'
array_A = [1, 2, 1, 4, 5, 3, 2, 6, 5, 8, 9]
array_B = [3, 2, 4, 2, 5, 1, 3, 3, 7, 5, 4]
vector_A = Vector[*array_A]
vector_B = Vector[*array_B]
def matrix_method a1, a2
(Matrix.row_vector(a1) * Matrix.column_vector(a2)).element(0,0)
end
def vector_method a1, a2
a1.inner_product(a2)
end
n = 100000
Benchmark.bmbm do |b|
b.report('matrix method') { n.times { matrix_method(array_A, array_B) } }
b.report('array walking') { n.times { (0...array_A.count).to_a.inject(0) {|r, i| r + array_A[i]*array_B[i]} } }
b.report('array walking without to_a') { n.times { (0...array_A.count).inject(0) {|r, i| r + array_A[i]*array_B[i]} } }
b.report('array zip') { n.times { array_A.zip(array_B).map{|i,j| i*j }.inject(:+) } }
b.report('array zip 2') { n.times { array_A.zip(array_B).inject(0) {|r, (a, b)| r + (a * b)} } }
b.report('while loop') do
n.times do
sum, i, size = 0, 0, array_A.size
while i < size
sum += array_A[i] * array_B[i]
i += 1
end
sum
end
end
b.report('vector') { n.times { vector_method(vector_A, vector_B) } }
end
And the results:
Rehearsal --------------------------------------------------------------
matrix method 0.860000 0.010000 0.870000 ( 0.911755)
array walking 0.290000 0.000000 0.290000 ( 0.294779)
array walking without to_a 0.190000 0.000000 0.190000 ( 0.215780)
array zip 0.420000 0.010000 0.430000 ( 0.441830)
array zip 2 0.340000 0.000000 0.340000 ( 0.352058)
while loop 0.080000 0.000000 0.080000 ( 0.085314)
vector 0.310000 0.000000 0.310000 ( 0.325498)
----------------------------------------------------- total: 2.510000sec
user system total real
matrix method 0.870000 0.020000 0.890000 ( 0.952630)
array walking 0.290000 0.000000 0.290000 ( 0.340443)
array walking without to_a 0.220000 0.000000 0.220000 ( 0.240651)
array zip 0.400000 0.010000 0.410000 ( 0.441829)
array zip 2 0.330000 0.000000 0.330000 ( 0.359365)
while loop 0.080000 0.000000 0.080000 ( 0.090099)
vector 0.300000 0.010000 0.310000 ( 0.325903)
------
Too bad. :(
Update
I've just updated benchmarks according to new comments. Following Joshua's comment, the inject method will gain a 25% speedup, see array walking without to_a
in the table below.
However since speed is the primary goal for the OP we have a new winner for the contest which reduces runtime from .34
to .22
in my benchmarks.
I still prefer inject
method because it's more ruby-ish, but if speed matters then the while loop seems to be the way.
New Answer
You can always benchmark all these answers, I did it for curiosity:
> ./matrix.rb
Rehearsal --------------------------------------------------------------
matrix method 1.500000 0.000000 1.500000 ( 1.510685)
array walking 0.470000 0.010000 0.480000 ( 0.475307)
array walking without to_a 0.340000 0.000000 0.340000 ( 0.337244)
array zip 0.590000 0.000000 0.590000 ( 0.594954)
array zip 2 0.500000 0.000000 0.500000 ( 0.509500)
while loop 0.220000 0.000000 0.220000 ( 0.219851)
----------------------------------------------------- total: 3.630000sec
user system total real
matrix method 1.500000 0.000000 1.500000 ( 1.501340)
array walking 0.480000 0.000000 0.480000 ( 0.480052)
array walking without to_a 0.340000 0.000000 0.340000 ( 0.338614)
array zip 0.610000 0.010000 0.620000 ( 0.625805)
array zip 2 0.510000 0.000000 0.510000 ( 0.506430)
while loop 0.220000 0.000000 0.220000 ( 0.220873)
Simple array walking wins, Matrix method is worse because it includes object instantiation. I think that if you want to beat the inject
while
method (to beat here means an order of magnitude fastest) you need to implement a C
extension and bind it in your ruby program.
Here it's the script I've used
#!/usr/bin/env ruby
require 'benchmark'
require 'matrix'
array_A = [1, 2, 1, 4, 5, 3, 2, 6, 5, 8, 9]
array_B = [3, 2, 4, 2, 5, 1, 3, 3, 7, 5, 4]
def matrix_method a1, a2
(Matrix.row_vector(a1) * Matrix.column_vector(a2)).element(0,0)
end
n = 100000
Benchmark.bmbm do |b|
b.report('matrix method') { n.times { matrix_method(array_A, array_B) } }
b.report('array walking') { n.times { (0...array_A.count).to_a.inject(0) {|r, i| r + array_A[i]*array_B[i]} } }
b.report('array walking without to_a') { n.times { (0...array_A.count).inject(0) {|r, i| r + array_A[i]*array_B[i]} } }
b.report('array zip') { n.times { array_A.zip(array_B).map{|i,j| i*j }.inject(:+) } }
b.report('array zip 2') { n.times { array_A.zip(array_B).inject(0) {|r, (a, b)| r + (a * b)} } }
b.report('while loop') do
n.times do
sum, i, size = 0, 0, array_A.size
while i < size
sum += array_A[i] * array_B[i]
i += 1
end
sum
end
end
end
This is how I would do it
array_A.zip(array_B).map{|i,j| i*j }.inject(:+)
This is another way:
array_A.zip(array_B).inject(0) {|r, (a, b)| r + (a * b)}
Walking through each element should be a must
(0...array_A.count).inject(0) {|r, i| r + array_A[i]*array_B[i]}
Since speed is our primary criterion, I'm going to submit this method as it's fastest according to Peter's benchmarks.
sum, i, size = 0, 0, a1.size
while i < size
sum += a1[i] * a2[i]
i += 1
end
sum