What is a good way to split a NumPy array randomly into training and testing/validation dataset? Something similar to the cvpartition
or crossvalind
There is another option that just entails using scikit-learn. As scikit's wiki describes, you can just use the following instructions:
from sklearn.model_selection import train_test_split
data, labels = np.arange(10).reshape((5, 2)), range(5)
data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.20, random_state=42)
This way you can keep in sync the labels for the data you're trying to split into training and test.
Here is a code to split the data into n=5 folds in a stratified manner
% X = data array
% y = Class_label
from sklearn.cross_validation import StratifiedKFold
skf = StratifiedKFold(y, n_folds=5)
for train_index, test_index in skf:
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
Just a note. In case you want train, test, AND validation sets, you can do this:
from sklearn.cross_validation import train_test_split
X = get_my_X()
y = get_my_y()
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)
These parameters will give 70 % to training, and 15 % each to test and val sets. Hope this helps.
After doing some reading and taking into account the (many..) different ways of splitting the data to train and test, I decided to timeit!
I used 4 different methods (non of them are using the library sklearn, which I'm sure will give the best results, giving that it is well designed and tested code):
method 3 won by far with the shortest time, after that method 1, and method 2 and 4 discovered to be really inefficient.
The code for the 4 different methods I timed:
import numpy as np
arr = np.random.rand(100, 3)
X = arr[:,:2]
Y = arr[:,2]
spl = 0.7
N = len(arr)
sample = int(spl*N)
#%% Method 1: shuffle the whole matrix arr and then split
np.random.shuffle(arr)
x_train, x_test, y_train, y_test = X[:sample,:], X[sample:, :], Y[:sample, ], Y[sample:,]
#%% Method 2: shuffle the indecies and then shuffle and apply to X and Y
train_idx = np.random.choice(N, sample)
Xtrain = X[train_idx]
Ytrain = Y[train_idx]
test_idx = [idx for idx in range(N) if idx not in train_idx]
Xtest = X[test_idx]
Ytest = Y[test_idx]
#%% Method 3: shuffle indicies without a for loop
idx = np.random.permutation(arr.shape[0]) # can also use random.shuffle
train_idx, test_idx = idx[:sample], idx[sample:]
x_train, x_test, y_train, y_test = X[train_idx,:], X[test_idx,:], Y[train_idx,], Y[test_idx,]
#%% Method 4: using pandas dataframe to split
import pandas as pd
df = pd.read_csv(file_path, header=None) # Some csv file (I used some file with 3 columns)
train = df.sample(frac=0.7, random_state=200)
test = df.drop(train.index)
And for the times, the minimum time to execute out of 3 repetitions of 1000 loops is:
I hope that's helpful!
As sklearn.cross_validation
module was deprecated, you can use:
import numpy as np
from sklearn.model_selection import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)
X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.2, random_state=42)
You may also consider stratified division into training and testing set. Startified division also generates training and testing set randomly but in such a way that original class proportions are preserved. This makes training and testing sets better reflect the properties of the original dataset.
import numpy as np
def get_train_test_inds(y,train_proportion=0.7):
'''Generates indices, making random stratified split into training set and testing sets
with proportions train_proportion and (1-train_proportion) of initial sample.
y is any iterable indicating classes of each observation in the sample.
Initial proportions of classes inside training and
testing sets are preserved (stratified sampling).
'''
y=np.array(y)
train_inds = np.zeros(len(y),dtype=bool)
test_inds = np.zeros(len(y),dtype=bool)
values = np.unique(y)
for value in values:
value_inds = np.nonzero(y==value)[0]
np.random.shuffle(value_inds)
n = int(train_proportion*len(value_inds))
train_inds[value_inds[:n]]=True
test_inds[value_inds[n:]]=True
return train_inds,test_inds
y = np.array([1,1,2,2,3,3])
train_inds,test_inds = get_train_test_inds(y,train_proportion=0.5)
print y[train_inds]
print y[test_inds]
This code outputs:
[1 2 3]
[1 2 3]