Alpha shapes in 3D

前端 未结 2 1109
鱼传尺愫
鱼传尺愫 2021-02-09 07:44

Is there an \"alpha shape\" function in 3 dimensions in python, other than the CGAL python bindings?

Alternatively, is there a way to extend the example below into 3D? <

相关标签:
2条回答
  • 2021-02-09 08:06

    You are looking for a "concave hull". The marching cube algorithm can be used to find such a hull. You can find a full example here.

    Limitations: This approach works well if your data comes from a volumetric dataset or if you have a cloud of points that can easily be converted into a volumetric data set (voxel-like). This can be done relatively easily with a dense set of points using, for example, a spatial indexer like the scipy cKDTree, but you might end up scratching your head a bit to get a good result if you have a sparse cloud of points.

    0 讨论(0)
  • 2021-02-09 08:16

    I wrote some code for finding alpha shape surface. I hope this helps.

    from scipy.spatial import Delaunay
    import numpy as np
    from collections import defaultdict
    
    def alpha_shape_3D(pos, alpha):
        """
        Compute the alpha shape (concave hull) of a set of 3D points.
        Parameters:
            pos - np.array of shape (n,3) points.
            alpha - alpha value.
        return
            outer surface vertex indices, edge indices, and triangle indices
        """
    
        tetra = Delaunay(pos)
        # Find radius of the circumsphere.
        # By definition, radius of the sphere fitting inside the tetrahedral needs 
        # to be smaller than alpha value
        # http://mathworld.wolfram.com/Circumsphere.html
        tetrapos = np.take(pos,tetra.vertices,axis=0)
        normsq = np.sum(tetrapos**2,axis=2)[:,:,None]
        ones = np.ones((tetrapos.shape[0],tetrapos.shape[1],1))
        a = np.linalg.det(np.concatenate((tetrapos,ones),axis=2))
        Dx = np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[1,2]],ones),axis=2))
        Dy = -np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[0,2]],ones),axis=2))
        Dz = np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[0,1]],ones),axis=2))
        c = np.linalg.det(np.concatenate((normsq,tetrapos),axis=2))
        r = np.sqrt(Dx**2+Dy**2+Dz**2-4*a*c)/(2*np.abs(a))
    
        # Find tetrahedrals
        tetras = tetra.vertices[r<alpha,:]
        # triangles
        TriComb = np.array([(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)])
        Triangles = tetras[:,TriComb].reshape(-1,3)
        Triangles = np.sort(Triangles,axis=1)
        # Remove triangles that occurs twice, because they are within shapes
        TrianglesDict = defaultdict(int)
        for tri in Triangles:TrianglesDict[tuple(tri)] += 1
        Triangles=np.array([tri for tri in TrianglesDict if TrianglesDict[tri] ==1])
        #edges
        EdgeComb=np.array([(0, 1), (0, 2), (1, 2)])
        Edges=Triangles[:,EdgeComb].reshape(-1,2)
        Edges=np.sort(Edges,axis=1)
        Edges=np.unique(Edges,axis=0)
    
        Vertices = np.unique(Edges)
        return Vertices,Edges,Triangles
    
    0 讨论(0)
提交回复
热议问题