Generating a moving sum variable in R

后端 未结 3 2008
盖世英雄少女心
盖世英雄少女心 2021-02-09 07:16

I suspect this is a somewhat simple question with multiple solutions, but I\'m still a bit of a novice in R and an exhaustive search didn\'t yield answers that spoke well to wha

相关标签:
3条回答
  • 2021-02-09 07:42

    If DF is the input three-column data frame then use ave with rollapplyr from zoo. Note that we use a width of k+1 and then drop the k+1st element from the sum so that the current value of x is excluded and only the remaining k values are summed:

    library(zoo)
    
    k <- 5
    roll <- function(x) rollapplyr(x, k+1, function(x) sum(x[-k-1]), fill = NA)
    transform(DF, xSyrsum = ave(x, country, FUN = roll))
    

    which gives:

       country year x xSyrsum
    1        A 1980 9      NA
    2        A 1981 3      NA
    3        A 1982 5      NA
    4        A 1983 6      NA
    5        A 1984 9      NA
    6        A 1985 7      32
    7        A 1986 9      30
    8        A 1987 4      36
    9        B 1990 0      NA
    10       B 1991 4      NA
    11       B 1992 2      NA
    12       B 1993 6      NA
    13       B 1994 3      NA
    14       B 1995 7      15
    15       B 1996 0      22
    
    0 讨论(0)
  • 2021-02-09 07:57

    You can use filter in ddply (or any other function implementing the "split-apply-combine" approach):

    library(plyr)
    ddply(DF, .(country), transform, 
              x5yrsum2 = as.numeric(filter(x,c(0,rep(1,5)),sides=1)))
    
    #    country year x x5yrsum x5yrsum2
    # 1        A 1980 9      NA       NA
    # 2        A 1981 3      NA       NA
    # 3        A 1982 5      NA       NA
    # 4        A 1983 6      NA       NA
    # 5        A 1984 9      NA       NA
    # 6        A 1985 7      32       32
    # 7        A 1986 9      30       30
    # 8        A 1987 4      36       36
    # 9        B 1990 0      NA       NA
    # 10       B 1991 4      NA       NA
    # 11       B 1992 2      NA       NA
    # 12       B 1993 6      NA       NA
    # 13       B 1994 3      NA       NA
    # 14       B 1995 7      15       15
    # 15       B 1996 0      22       22
    
    0 讨论(0)
  • 2021-02-09 08:00

    you can also use filter of standard packages (stats) to do moving sum:

    ms=function(x,n=5) as.numeric(stats::filter(x,rep(1, n),method="convolution",sides=1))
    x=c(1,2,3,4,5,6,7,8,9)
    ms(x,5)
    NA NA NA NA 15 20 25 30 35
    

    To do a 1-lag, insert NA at the begining and take the number of elements (or lines):

    ms.1lag=c(NA,ms(x,5))[1:length(x)]
    cbind(x,ms.1lag)
    x ms.1lag
    [1,] 1      NA
    [2,] 2      NA
    [3,] 3      NA
    [4,] 4      NA
    [5,] 5      NA
    [6,] 6      15
    [7,] 7      20
    [8,] 8      25
    [9,] 9      30
    

    If you use this frequently,

    ms=function(x,n=5,lag=0)
      c(rep(NA,lag),
        as.numeric(stats::filter(x,rep(1, n),method="convolution",sides=1)))[1:length(x)]
    cbind(x,ms5.1=ms(x,5,1))
          x ms5.1
     [1,] 1    NA
     [2,] 2    NA
     [3,] 3    NA
     [4,] 4    NA
     [5,] 5    NA
     [6,] 6    15
     [7,] 7    20
     [8,] 8    25
     [9,] 9    30
    
    0 讨论(0)
提交回复
热议问题