I have two 2d numpy arrays: x_array contains positional information in the x-direction, y_array contains positions in the y-direction.
I then have a long list of x,y
scipy.spatial
also has a k-d tree implementation: scipy.spatial.KDTree.
The approach is generally to first use the point data to build up a k-d tree. The computational complexity of that is on the order of N log N, where N is the number of data points. Range queries and nearest neighbour searches can then be done with log N complexity. This is much more efficient than simply cycling through all points (complexity N).
Thus, if you have repeated range or nearest neighbor queries, a k-d tree is highly recommended.
Here is a scipy.spatial.KDTree
example
In [1]: from scipy import spatial
In [2]: import numpy as np
In [3]: A = np.random.random((10,2))*100
In [4]: A
Out[4]:
array([[ 68.83402637, 38.07632221],
[ 76.84704074, 24.9395109 ],
[ 16.26715795, 98.52763827],
[ 70.99411985, 67.31740151],
[ 71.72452181, 24.13516764],
[ 17.22707611, 20.65425362],
[ 43.85122458, 21.50624882],
[ 76.71987125, 44.95031274],
[ 63.77341073, 78.87417774],
[ 8.45828909, 30.18426696]])
In [5]: pt = [6, 30] # <-- the point to find
In [6]: A[spatial.KDTree(A).query(pt)[1]] # <-- the nearest point
Out[6]: array([ 8.45828909, 30.18426696])
#how it works!
In [7]: distance,index = spatial.KDTree(A).query(pt)
In [8]: distance # <-- The distances to the nearest neighbors
Out[8]: 2.4651855048258393
In [9]: index # <-- The locations of the neighbors
Out[9]: 9
#then
In [10]: A[index]
Out[10]: array([ 8.45828909, 30.18426696])
If you can massage your data into the right format, a fast way to go is to use the methods in scipy.spatial.distance
:
http://docs.scipy.org/doc/scipy/reference/spatial.distance.html
In particular pdist
and cdist
provide fast ways to calculate pairwise distances.