I want to know how to omit NA
values in a data frame, but only in some columns I am interested in.
For example,
DF <- data.frame(x =
Just try this:
DF %>% t %>% na.omit %>% t
It transposes the data frame and omits null rows which were 'columns' before transposition and then you transpose it back.
You could use the complete.cases
function and put it into a function thusly:
DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA), z=c(NA, 33, 22))
completeFun <- function(data, desiredCols) {
completeVec <- complete.cases(data[, desiredCols])
return(data[completeVec, ])
}
completeFun(DF, "y")
# x y z
# 1 1 0 NA
# 2 2 10 33
completeFun(DF, c("y", "z"))
# x y z
# 2 2 10 33
EDIT: Only return rows with no NA
s
If you want to eliminate all rows with at least one NA
in any column, just use the complete.cases
function straight up:
DF[complete.cases(DF), ]
# x y z
# 2 2 10 33
Or if completeFun
is already ingrained in your workflow ;)
completeFun(DF, names(DF))
Hadley's tidyr
just got this amazing function drop_na
library(tidyr)
DF %>% drop_na(y)
x y z
1 1 0 NA
2 2 10 33
Omit row if either of two specific columns contain <NA>
.
DF[!is.na(DF$x)&!is.na(DF$z),]
It is possible to use na.omit
for data.table
:
na.omit(data, cols = c("x", "z"))
Try this:
cc=is.na(DF$y)
m=which(cc==c("TRUE"))
DF=DF[-m,]