All reservations about unsecuring your SecureString by creating a System.String out of it aside, how can it be done?
How can I convert an ordinary S
If you use a StringBuilder
instead of a string
, you can overwrite the actual value in memory when you are done. That way the password won't hang around in memory until garbage collection picks it up.
StringBuilder.Append(plainTextPassword);
StringBuilder.Clear();
// overwrite with reasonably random characters
StringBuilder.Append(New Guid().ToString());
Final working solution according to sclarke81 solution and John Flaherty fixes is:
public static class Utils
{
/// <remarks>
/// This method creates an empty managed string and pins it so that the garbage collector
/// cannot move it around and create copies. An unmanaged copy of the the secure string is
/// then created and copied into the managed string. The action is then called using the
/// managed string. Both the managed and unmanaged strings are then zeroed to erase their
/// contents. The managed string is unpinned so that the garbage collector can resume normal
/// behaviour and the unmanaged string is freed.
/// </remarks>
public static T UseDecryptedSecureString<T>(this SecureString secureString, Func<string, T> action)
{
int length = secureString.Length;
IntPtr sourceStringPointer = IntPtr.Zero;
// Create an empty string of the correct size and pin it so that the GC can't move it around.
string insecureString = new string('\0', length);
var insecureStringHandler = GCHandle.Alloc(insecureString, GCHandleType.Pinned);
IntPtr insecureStringPointer = insecureStringHandler.AddrOfPinnedObject();
try
{
// Create an unmanaged copy of the secure string.
sourceStringPointer = Marshal.SecureStringToBSTR(secureString);
// Use the pointers to copy from the unmanaged to managed string.
for (int i = 0; i < secureString.Length; i++)
{
short unicodeChar = Marshal.ReadInt16(sourceStringPointer, i * 2);
Marshal.WriteInt16(insecureStringPointer, i * 2, unicodeChar);
}
return action(insecureString);
}
finally
{
// Zero the managed string so that the string is erased. Then unpin it to allow the
// GC to take over.
Marshal.Copy(new byte[length * 2], 0, insecureStringPointer, length * 2);
insecureStringHandler.Free();
// Zero and free the unmanaged string.
Marshal.ZeroFreeBSTR(sourceStringPointer);
}
}
/// <summary>
/// Allows a decrypted secure string to be used whilst minimising the exposure of the
/// unencrypted string.
/// </summary>
/// <param name="secureString">The string to decrypt.</param>
/// <param name="action">
/// Func delegate which will receive the decrypted password as a string object
/// </param>
/// <returns>Result of Func delegate</returns>
/// <remarks>
/// This method creates an empty managed string and pins it so that the garbage collector
/// cannot move it around and create copies. An unmanaged copy of the the secure string is
/// then created and copied into the managed string. The action is then called using the
/// managed string. Both the managed and unmanaged strings are then zeroed to erase their
/// contents. The managed string is unpinned so that the garbage collector can resume normal
/// behaviour and the unmanaged string is freed.
/// </remarks>
public static void UseDecryptedSecureString(this SecureString secureString, Action<string> action)
{
UseDecryptedSecureString(secureString, (s) =>
{
action(s);
return 0;
});
}
}
Obviously you know how this defeats the whole purpose of a SecureString, but I'll restate it anyway.
If you want a one-liner, try this: (.NET 4 and above only)
string password = new System.Net.NetworkCredential(string.Empty, securePassword).Password;
Where securePassword is a SecureString.
Dang. right after posting this I found the answer deep in this article. But if anyone knows how to access the IntPtr unmanaged, unencrypted buffer that this method exposes, one byte at a time so that I don't have to create a managed string object out of it to keep my security high, please add an answer. :)
static String SecureStringToString(SecureString value)
{
IntPtr bstr = Marshal.SecureStringToBSTR(value);
try
{
return Marshal.PtrToStringBSTR(bstr);
}
finally
{
Marshal.FreeBSTR(bstr);
}
}
I think it would be best for SecureString
dependent functions to encapsulate their dependent logic in an anonymous function for better control over the decrypted string in memory (once pinned).
The implementation for decrypting SecureStrings in this snippet will:
finally
block.This obviously makes it a lot easier to "standardize" and maintain callers vs. relying on less desirable alternatives:
string DecryptSecureString(...)
helper function.Notice here, you have two options:
static T DecryptSecureString<T>
which allows you to access the result of the Func
delegate from the caller (as shown in the DecryptSecureStringWithFunc
test method).static void DecryptSecureString
is simply a "void" version which employ an Action
delegate in cases where you actually don't want/need to return anything (as demonstrated in the DecryptSecureStringWithAction
test method).Example usage for both can be found in the StringsTest
class included.
Strings.cs
using System;
using System.Runtime.InteropServices;
using System.Security;
namespace SecurityUtils
{
public partial class Strings
{
/// <summary>
/// Passes decrypted password String pinned in memory to Func delegate scrubbed on return.
/// </summary>
/// <typeparam name="T">Generic type returned by Func delegate</typeparam>
/// <param name="action">Func delegate which will receive the decrypted password pinned in memory as a String object</param>
/// <returns>Result of Func delegate</returns>
public static T DecryptSecureString<T>(SecureString secureString, Func<string, T> action)
{
var insecureStringPointer = IntPtr.Zero;
var insecureString = String.Empty;
var gcHandler = GCHandle.Alloc(insecureString, GCHandleType.Pinned);
try
{
insecureStringPointer = Marshal.SecureStringToGlobalAllocUnicode(secureString);
insecureString = Marshal.PtrToStringUni(insecureStringPointer);
return action(insecureString);
}
finally
{
//clear memory immediately - don't wait for garbage collector
fixed(char* ptr = insecureString )
{
for(int i = 0; i < insecureString.Length; i++)
{
ptr[i] = '\0';
}
}
insecureString = null;
gcHandler.Free();
Marshal.ZeroFreeGlobalAllocUnicode(insecureStringPointer);
}
}
/// <summary>
/// Runs DecryptSecureString with support for Action to leverage void return type
/// </summary>
/// <param name="secureString"></param>
/// <param name="action"></param>
public static void DecryptSecureString(SecureString secureString, Action<string> action)
{
DecryptSecureString<int>(secureString, (s) =>
{
action(s);
return 0;
});
}
}
}
StringsTest.cs
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Security;
namespace SecurityUtils.Test
{
[TestClass]
public class StringsTest
{
[TestMethod]
public void DecryptSecureStringWithFunc()
{
// Arrange
var secureString = new SecureString();
foreach (var c in "UserPassword123".ToCharArray())
secureString.AppendChar(c);
secureString.MakeReadOnly();
// Act
var result = Strings.DecryptSecureString<bool>(secureString, (password) =>
{
return password.Equals("UserPassword123");
});
// Assert
Assert.IsTrue(result);
}
[TestMethod]
public void DecryptSecureStringWithAction()
{
// Arrange
var secureString = new SecureString();
foreach (var c in "UserPassword123".ToCharArray())
secureString.AppendChar(c);
secureString.MakeReadOnly();
// Act
var result = false;
Strings.DecryptSecureString(secureString, (password) =>
{
result = password.Equals("UserPassword123");
});
// Assert
Assert.IsTrue(result);
}
}
}
Obviously, this doesn't prevent abuse of this function in the following manner, so just be careful not to do this:
[TestMethod]
public void DecryptSecureStringWithAction()
{
// Arrange
var secureString = new SecureString();
foreach (var c in "UserPassword123".ToCharArray())
secureString.AppendChar(c);
secureString.MakeReadOnly();
// Act
string copyPassword = null;
Strings.DecryptSecureString(secureString, (password) =>
{
copyPassword = password; // Please don't do this!
});
// Assert
Assert.IsNull(copyPassword); // Fails
}
Happy coding!