Say I have a Schema like this:
class MySchema(Schema):
field_1 = Float()
field_2 = Float()
...
field_42 = Float()
Is there a w
I managed to do it by subclassing the default metaclass:
class MySchemaMeta(SchemaMeta):
@classmethod
def get_declared_fields(mcs, klass, cls_fields, inherited_fields, dict_cls):
fields = super().get_declared_fields(klass, cls_fields, inherited_fields, dict_cls)
FIELDS = ('field_1', 'field_2',..., 'field_42')
for field in FIELDS:
fields.update({fluid: Float()})
return fields
class MySchema(Schema, metaclass=MySchemaMeta):
class Meta:
strict = True
I made this more generic:
class DynamicSchemaOpts(SchemaOpts):
def __init__(self, meta):
super().__init__(meta)
self.auto_fields = getattr(meta, 'auto_fields', [])
class DynamicSchemaMeta(SchemaMeta):
@classmethod
def get_declared_fields(mcs, klass, cls_fields, inherited_fields, dict_cls):
fields = super().get_declared_fields(klass, cls_fields, inherited_fields, dict_cls)
for auto_field_list in klass.opts.auto_fields:
field_names, field = auto_field_list
field_cls = field['cls']
field_args = field.get('args', [])
field_kwargs = field.get('kwargs', {})
for field_name in field_names:
fields.update({field_name: field_cls(*field_args, **field_kwargs)})
return fields
class MySchema(Schema, metaclass=DynamicSchemaMeta):
OPTIONS_CLASS = DynamicSchemaOpts
class Meta:
strict = True
auto_fields = [
(FIELDS,
{'cls': Float}),
]
I didn't write
class Meta:
strict = True
auto_fields = [
(FIELDS, Float()),
]
because then all those fields would share the same Field
instance.
The Field
and its args/kwargs must be specified separately:
class Meta:
strict = True
auto_fields = [
(FIELDS,
{'cls': Nested,
'args': (MyEmbeddedSchema),
'kwargs': {'required': True}
}),
]
I don't have any example use case failing due to several fields sharing the same instance, but it doesn't sound safe. If this precaution is useless then the code could be simplified and made more readable:
class Meta:
strict = True
auto_fields = [
(FIELDS, Nested(MyEmbeddedSchema, required=True)),
]
Obviously, this answer is specific to Marshmallow and does not apply to other ODM/ORM libraries.
The class Meta paradigm allows you to specify which attributes you want to serialize. Marshmallow will choose an appropriate field type based on the attribute’s type.
class MySchema(Schema):
class Meta:
fields = ('field_1', 'field_2', ..., 'field_42')
...
Refactoring: Implicit Field Creation
The following method works for me.
I've demonstrated it using Marshmallow-SQLAlchemy because I'm not sure something like this is needed for plain Marshmallow anymore -- with version 3.0.0 it's pretty straightforward to programmatically create a schema using from_dict
. But you could certainly use these concepts with plain Marshmallow.
Here, I use Marshmallow-SQLAlchemy to infer most of the schema, and then apply special treatment to a couple of the fields programmatically.
import enum
from marshmallow_enum import EnumField
from marshmallow_sqlalchemy import ModelSchema
from sqlalchemy import Column
from sqlalchemy import Enum
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.ext.declarative import declarative_base
BaseResource = declarative_base()
class CustomEnum(enum.Enum):
VALUE_1 = "the first value"
VALUE_2 = "the second value"
class ExampleResource(BaseResource):
__tablename__ = "example_resource"
id = Column(Integer, primary_key=True)
enum_field = Column(Enum(CustomEnum), nullable=False)
title = Column(String)
string_two = Column(String)
def __init__(self, **kwargs):
super(ExampleResource, self).__init__(**kwargs)
def generate_schema(class_, serialization_fields, serialization_fields_excluded):
"""A method for programmatically generating schema.
Args:
class_ (class): the class to generate the schema for
serialization_fields (dict): key-value pairs with the field name and its Marshmallow `Field`
serialization_fields_excluded (tuple): fields to exclude
Returns:
schema (marshmallow.schema.Schema): the generated schema
"""
class MarshmallowBaseSchema(object):
pass
if serialization_fields is not None:
for field, marshmallow_field in serialization_fields.items():
setattr(MarshmallowBaseSchema, field, marshmallow_field)
class MarshmallowSchema(MarshmallowBaseSchema, ModelSchema):
class Meta:
model = class_
exclude = serialization_fields_excluded
return MarshmallowSchema
generated_schema = generate_schema(
class_=ExampleResource,
# I'm using a special package to handle the field `enum_field`
serialization_fields=dict(enum_field=EnumField(CustomEnum, by_value=True, required=True)),
# I'm excluding the field `string_two`
serialization_fields_excluded=("string_two",),
)
example_resource = ExampleResource(
id=1,
enum_field=CustomEnum.VALUE_2,
title="A Title",
string_two="This will be ignored."
)
print(generated_schema().dump(example_resource))
# {'title': 'A Title', 'id': 1, 'enum_field': 'the second value'}
It's necessary to define MarshmallowBaseSchema
as a plain object, add all the fields, and then inherit from that class because the Marshmallow Schema initializes all the fields on init (in particular, _init_fields()
), so this inheritance pattern makes sure all the fields are there at that time.
All you need to do is to use type() function to build your class with any attributes you want:
MySchema = type('MySchema', (marshmallow.Schema,), {
attr: marshmallow.fields.Float()
for attr in FIELDS
})
You can even have different types of fields there:
fields = {}
fields['foo'] = marshmallow.fields.Float()
fields['bar'] = marshmallow.fields.String()
MySchema = type('MySchema', (marshmallow.Schema,), fields)
or as a base for your customizations:
class MySchema(type('_MySchema', (marshmallow.Schema,), fields)):
@marshmallow.post_dump
def update_something(self, data):
pass