Define fields programmatically in Marshmallow Schema

后端 未结 4 543
不思量自难忘°
不思量自难忘° 2021-02-09 05:27

Say I have a Schema like this:

class MySchema(Schema):

    field_1 = Float()
    field_2 = Float()
    ...
    field_42 = Float()

Is there a w

相关标签:
4条回答
  • 2021-02-09 05:47

    I managed to do it by subclassing the default metaclass:

    class MySchemaMeta(SchemaMeta):
    
        @classmethod
        def get_declared_fields(mcs, klass, cls_fields, inherited_fields, dict_cls):
            fields = super().get_declared_fields(klass, cls_fields, inherited_fields, dict_cls)
            FIELDS = ('field_1', 'field_2',..., 'field_42')
            for field in FIELDS:
                fields.update({fluid: Float()})
            return fields
    
    class MySchema(Schema, metaclass=MySchemaMeta):
    
        class Meta:
            strict = True
    

    I made this more generic:

    class DynamicSchemaOpts(SchemaOpts):
    
        def __init__(self, meta):
            super().__init__(meta)
            self.auto_fields = getattr(meta, 'auto_fields', [])
    
    
    class DynamicSchemaMeta(SchemaMeta):
    
        @classmethod
        def get_declared_fields(mcs, klass, cls_fields, inherited_fields, dict_cls):
    
            fields = super().get_declared_fields(klass, cls_fields, inherited_fields, dict_cls)
    
            for auto_field_list in klass.opts.auto_fields:
                field_names, field = auto_field_list
                field_cls = field['cls']
                field_args = field.get('args', [])
                field_kwargs = field.get('kwargs', {})
                for field_name in field_names:
                    fields.update({field_name: field_cls(*field_args, **field_kwargs)})
    
            return fields
    
    
    class MySchema(Schema, metaclass=DynamicSchemaMeta):
    
        OPTIONS_CLASS = DynamicSchemaOpts
    
        class Meta:
            strict = True
            auto_fields = [
                (FIELDS,
                 {'cls': Float}),
            ]
    

    I didn't write

    class Meta:
        strict = True
        auto_fields = [
            (FIELDS, Float()),
        ]
    

    because then all those fields would share the same Field instance.

    The Field and its args/kwargs must be specified separately:

        class Meta:
            strict = True
            auto_fields = [
                (FIELDS,
                 {'cls': Nested,
                  'args': (MyEmbeddedSchema),
                  'kwargs': {'required': True}
                 }),
            ]
    

    I don't have any example use case failing due to several fields sharing the same instance, but it doesn't sound safe. If this precaution is useless then the code could be simplified and made more readable:

        class Meta:
            strict = True
            auto_fields = [
                (FIELDS, Nested(MyEmbeddedSchema, required=True)),
            ]
    

    Obviously, this answer is specific to Marshmallow and does not apply to other ODM/ORM libraries.

    0 讨论(0)
  • 2021-02-09 05:47

    The class Meta paradigm allows you to specify which attributes you want to serialize. Marshmallow will choose an appropriate field type based on the attribute’s type.

    class MySchema(Schema):
        class Meta:
            fields = ('field_1', 'field_2', ..., 'field_42')
        ...
    

    Refactoring: Implicit Field Creation

    0 讨论(0)
  • 2021-02-09 06:09

    The following method works for me.

    I've demonstrated it using Marshmallow-SQLAlchemy because I'm not sure something like this is needed for plain Marshmallow anymore -- with version 3.0.0 it's pretty straightforward to programmatically create a schema using from_dict. But you could certainly use these concepts with plain Marshmallow.

    Here, I use Marshmallow-SQLAlchemy to infer most of the schema, and then apply special treatment to a couple of the fields programmatically.

    import enum
    
    from marshmallow_enum import EnumField
    from marshmallow_sqlalchemy import ModelSchema
    from sqlalchemy import Column
    from sqlalchemy import Enum
    from sqlalchemy import Integer
    from sqlalchemy import String
    from sqlalchemy.ext.declarative import declarative_base
    
    
    BaseResource = declarative_base()
    
    
    class CustomEnum(enum.Enum):
        VALUE_1 = "the first value"
        VALUE_2 = "the second value"
    
    
    class ExampleResource(BaseResource):
        __tablename__ = "example_resource"
    
        id = Column(Integer, primary_key=True)
        enum_field = Column(Enum(CustomEnum), nullable=False)
        title = Column(String)
        string_two = Column(String)
    
        def __init__(self, **kwargs):
            super(ExampleResource, self).__init__(**kwargs)
    
    
    def generate_schema(class_, serialization_fields, serialization_fields_excluded):
        """A method for programmatically generating schema.
    
        Args:
            class_ (class): the class to generate the schema for
            serialization_fields (dict): key-value pairs with the field name and its Marshmallow `Field`
            serialization_fields_excluded (tuple): fields to exclude
    
        Returns:
            schema (marshmallow.schema.Schema): the generated schema
    
        """
    
        class MarshmallowBaseSchema(object):
            pass
    
        if serialization_fields is not None:
            for field, marshmallow_field in serialization_fields.items():
                setattr(MarshmallowBaseSchema, field, marshmallow_field)
    
        class MarshmallowSchema(MarshmallowBaseSchema, ModelSchema):
            class Meta:
                model = class_
                exclude = serialization_fields_excluded
    
        return MarshmallowSchema
    
    
    generated_schema = generate_schema(
        class_=ExampleResource,
        # I'm using a special package to handle the field `enum_field`
        serialization_fields=dict(enum_field=EnumField(CustomEnum, by_value=True, required=True)),
        # I'm excluding the field `string_two`
        serialization_fields_excluded=("string_two",),
    )
    
    example_resource = ExampleResource(
        id=1,
        enum_field=CustomEnum.VALUE_2,
        title="A Title",
        string_two="This will be ignored."
    )
    print(generated_schema().dump(example_resource))
    # {'title': 'A Title', 'id': 1, 'enum_field': 'the second value'}
    

    It's necessary to define MarshmallowBaseSchema as a plain object, add all the fields, and then inherit from that class because the Marshmallow Schema initializes all the fields on init (in particular, _init_fields()), so this inheritance pattern makes sure all the fields are there at that time.

    0 讨论(0)
  • 2021-02-09 06:12

    All you need to do is to use type() function to build your class with any attributes you want:

    MySchema = type('MySchema', (marshmallow.Schema,), {
        attr: marshmallow.fields.Float()
        for attr in FIELDS
    })
    

    You can even have different types of fields there:

    fields = {}
    fields['foo'] = marshmallow.fields.Float()
    fields['bar'] = marshmallow.fields.String()
    MySchema = type('MySchema', (marshmallow.Schema,), fields)
    

    or as a base for your customizations:

    class MySchema(type('_MySchema', (marshmallow.Schema,), fields)):
        @marshmallow.post_dump
        def update_something(self, data):
            pass
    
    0 讨论(0)
提交回复
热议问题