Filtering and comparing dates with Pandas

后端 未结 3 1870
花落未央
花落未央 2021-02-09 04:51

I would like to know how to filter different dates at all the different time levels, i.e. find dates by year, month, day, hour, minute and/or day. For example, how do I find all

相关标签:
3条回答
  • 2021-02-09 05:31

    If you set timestamp as index and dtype as datetime to get a DateTimeIndex, then you can use the following Partial String Indexing syntax:

    df['2014'] # gets all 2014
    df['2014-01'] # gets all Jan 2014
    df['01-02-2014'] # gets all Jan 2, 2014
    
    0 讨论(0)
  • 2021-02-09 05:36

    You can filter your dataframe via boolean indexing like so:

    df.loc[df['timeStamp'].dt.year == 2014]
    df.loc[df['timeStamp'].dt.month == 5]
    df.loc[df['timeStamp'].dt.second == 4]
    df.loc[df['timeStamp'] == '2014-01-02']
    df.loc[pd.to_datetime(df['timeStamp'].dt.date) == '2014-01-02']
    

    ... and so on and so forth.

    0 讨论(0)
  • 2021-02-09 05:51

    I would just create a string series, then use str.contains() with wildcards. That will give you whatever granularity you're looking for.

    s = df['timeStamp'].map(lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
    
    print(df[s.str.contains('2014-..-.. ..:..:..')])
    print(df[s.str.contains('2014-..-02 ..:..:..')])
    print(df[s.str.contains('....-02-.. ..:..:..')])
    print(df[s.str.contains('....-..-.. 18:03:10')])
    

    Output:

            timeStamp
    0 2014-01-02 21:03:04
    1 2014-02-02 21:03:05
            timeStamp
    0 2014-01-02 21:03:04
    1 2014-02-02 21:03:05
            timeStamp
    1 2014-02-02 21:03:05
    2 2016-02-04 18:03:10
            timeStamp
    2 2016-02-04 18:03:10
    

    I think this also solves your question about boolean indices:

    print(s.str.contains('....-..-.. 18:03:10'))
    

    Output:

    0    False
    1    False
    2     True
    Name: timeStamp, dtype: bool
    
    0 讨论(0)
提交回复
热议问题