I\'m going to try to ask my question in the context of a simple example...
Let\'s say I have an abstract base class Car. Car has-a basic Engine object. I have a method
You can use C# generics to get what you're looking for, here.
The distinction of using generics is that your Ferrari
"knows" that its Engine
is-a TurboEngine
, while the Car
class doesn't have to know anything new—only that EngineType
is-an Engine
.
class Program
{
static void Main(string[] args)
{
Ferrari ferarri = new Ferrari();
ferarri.Start();
ferarri.Boost();
}
}
public class Car<EngineType> where EngineType : Engine, new()
{
protected EngineType engine;
public Car()
{
this.CreateEngine();
}
protected void CreateEngine()
{
this.engine = new EngineType();
}
public void Start()
{
engine.Start();
}
}
public class Ferrari : Car<TurboEngine>
{
public void Boost()
{
engine.Boost();
}
}
public class Engine
{
public virtual void Start()
{
Console.WriteLine("Vroom!");
}
}
public class TurboEngine : Engine
{
public void Boost()
{
Console.WriteLine("Hang on to your teeth...");
}
public override void Start()
{
Console.WriteLine("VROOOOM! VROOOOM!");
}
}
Depending on your particular language semantics, there are a few ways to do this. Off the cuff my initial thought would be to provide a protected constructor:
public class Car {
private Engine engine;
public Car() {
this(new Engine());
}
protected Car(Engine engine) {
this.engine = engine;
}
public void start() {
this.engine.start();
}
}
public class Ferrari {
public Ferrari() {
super(new TurboEngine());
}
}
As I understand your (updated) question, you're going to have to cast the car's engine to the TurboEngine
type if you want to call TurboEngine
methods on it. That results in a lot of checking to see if the car you have has a TurboEngine
before you call those methods, but that's what you get. Not knowing what this car is actually standing in for, I can't think of any reason you couldn't have the engine and the turbo engine share the same interface - are there really new methods that the turbo supports, or does it just do the same things differently - but I guess this metaphor was going to fall apart sooner or later.
The Abstract Factory pattern is precisely for this problem. Google GoF Abstract Factory {your preferred language}
In the following, note how you can either use the concrete factories to produce "complete" objects (enzo, civic) or you can use them to produce "families" of related objects (CarbonFrame + TurboEngine, WeakFrame + WeakEngine). Ultimately, you always end up with a Car object that responds to accelerate() with type-specific behavior.
using System;
abstract class CarFactory
{
public static CarFactory FactoryFor(string manufacturer){
switch(manufacturer){
case "Ferrari" : return new FerrariFactory();
case "Honda" : return new HondaFactory();
default:
throw new ArgumentException("Unknown car manufacturer. Please bailout industry.");
}
}
public abstract Car createCar();
public abstract Engine createEngine();
public abstract Frame createFrame();
}
class FerrariFactory : CarFactory
{
public override Car createCar()
{
return new Ferrari(createEngine(), createFrame());
}
public override Engine createEngine()
{
return new TurboEngine();
}
public override Frame createFrame()
{
return new CarbonFrame();
}
}
class HondaFactory : CarFactory
{
public override Car createCar()
{
return new Honda(createEngine(), createFrame());
}
public override Engine createEngine()
{
return new WeakEngine();
}
public override Frame createFrame()
{
return new WeakFrame();
}
}
abstract class Car
{
private Engine engine;
private Frame frame;
public Car(Engine engine, Frame frame)
{
this.engine = engine;
this.frame = frame;
}
public void accelerate()
{
engine.setThrottle(1.0f);
frame.respondToSpeed();
}
}
class Ferrari : Car
{
public Ferrari(Engine engine, Frame frame) : base(engine, frame)
{
Console.WriteLine("Setting sticker price to $250K");
}
}
class Honda : Car
{
public Honda(Engine engine, Frame frame) : base(engine, frame)
{
Console.WriteLine("Setting sticker price to $25K");
}
}
class KitCar : Car
{
public KitCar(String name, Engine engine, Frame frame)
: base(engine, frame)
{
Console.WriteLine("Going out in the garage and building myself a " + name);
}
}
abstract class Engine
{
public void setThrottle(float percent)
{
Console.WriteLine("Stomping on accelerator!");
typeSpecificAcceleration();
}
protected abstract void typeSpecificAcceleration();
}
class TurboEngine : Engine
{
protected override void typeSpecificAcceleration()
{
Console.WriteLine("Activating turbo");
Console.WriteLine("Making noise like Barry White gargling wasps");
}
}
class WeakEngine : Engine
{
protected override void typeSpecificAcceleration()
{
Console.WriteLine("Provoking hamster to run faster");
Console.WriteLine("Whining like a dentist's drill");
}
}
abstract class Frame
{
public abstract void respondToSpeed();
}
class CarbonFrame : Frame
{
public override void respondToSpeed()
{
Console.WriteLine("Activating active suspension and extending spoilers");
}
}
class WeakFrame : Frame
{
public override void respondToSpeed()
{
Console.WriteLine("Loosening bolts and vibrating");
}
}
class TestClass
{
public static void Main()
{
CarFactory ferrariFactory = CarFactory.FactoryFor("Ferrari");
Car enzo = ferrariFactory.createCar();
enzo.accelerate();
Console.WriteLine("---");
CarFactory hondaFactory = CarFactory.FactoryFor("Honda");
Car civic = hondaFactory.createCar();
civic.accelerate();
Console.WriteLine("---");
Frame frame = hondaFactory.createFrame();
Engine engine = ferrariFactory.createEngine();
Car kitCar = new KitCar("Shaker", engine, frame);
kitCar.accelerate();
Console.WriteLine("---");
Car kitCar2 = new KitCar("LooksGreatGoesSlow", hondaFactory.createEngine(), ferrariFactory.createFrame());
kitCar2.accelerate();
}
}