Is there any way to use TensorBoard when training a TensorFlow model on Google Colab?
TensorBoard for TensorFlow running on Google Colab using tensorboardcolab. This uses ngrok internally for tunnelling.
!pip install tensorboardcolab
tbc = TensorBoardColab()
This automatically creates a TensorBoard link that can be used. This Tensorboard is reading the data at './Graph'
summary_writer = tbc.get_writer()
tensorboardcolab library has the method that returns FileWriter object pointing to above './Graph' location.
You can add scalar info or graph or histogram data.
Reference: https://github.com/taomanwai/tensorboardcolab
Simple and easiest way I have found so far:
Get setup_google_colab.py file using wget
!wget https://raw.githubusercontent.com/hse-aml/intro-to- dl/master/setup_google_colab.py -O setup_google_colab.py
import setup_google_colab
To run tensorboard in background, expose port and click on the link.
I am assuming that you have proper added value to visualize in your summary and then merge all summaries.
import os
os.system("tensorboard --logdir=./logs --host 0.0.0.0 --port 6006 &")
setup_google_colab.expose_port_on_colab(6006)
After running above statements you will prompted with a link like:
Open https://a1b2c34d5.ngrok.io to access your 6006 port
Refer following git for further help:
https://github.com/MUmarAmanat/MLWithTensorflow/blob/master/colab_tensorboard.ipynb
There is an alternative solution but we have to use TFv2.0 preview. So if you don't have problems with the migration try this:
install tfv2.0 for GPU or CPU (TPU no available yet)
CPU
tf-nightly-2.0-preview
GPU
tf-nightly-gpu-2.0-preview
%%capture
!pip install -q tf-nightly-gpu-2.0-preview
# Load the TensorBoard notebook extension
# %load_ext tensorboard.notebook # For older versions
%load_ext tensorboard
import TensorBoard as usual:
from tensorflow.keras.callbacks import TensorBoard
Clean or Create folder where to save the logs (run this lines before run the training fit()
)
# Clear any logs from previous runs
import time
!rm -R ./logs/ # rf
log_dir="logs/fit/{}".format(time.strftime("%Y%m%d-%H%M%S", time.gmtime()))
tensorboard = TensorBoard(log_dir=log_dir, histogram_freq=1)
Have fun with TensorBoard! :)
%tensorboard --logdir logs/fit
Here the official colab notebook and the repo on github
New TFv2.0 alpha release:
CPU
!pip install -q tensorflow==2.0.0-alpha0
GPU
!pip install -q tensorflow-gpu==2.0.0-alpha0
Here is how you can display your models inline on Google Colab. Below is a very simple example that displays a placeholder:
from IPython.display import clear_output, Image, display, HTML
import tensorflow as tf
import numpy as np
from google.colab import files
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = "<stripped %d bytes>"%size
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display(HTML(iframe))
"""Create a sample tensor"""
sample_placeholder= tf.placeholder(dtype=tf.float32)
"""Show it"""
graph_def = tf.get_default_graph().as_graph_def()
show_graph(graph_def)
Currently, you cannot run a Tensorboard service on Google Colab the way you run it locally. Also, you cannot export your entire log to your Drive via something like summary_writer = tf.summary.FileWriter('./logs', graph_def=sess.graph_def)
so that you could then download it and look at it locally.
I tried but did not get the result but when used as below, got the results
import tensorboardcolab as tb
tbc = tb.TensorBoardColab()
import tensorflow as tf
import numpy as np
graph = tf.Graph()
with graph.as_default()
Complete example :
with tf.name_scope("variables"):
# Variable to keep track of how many times the graph has been run
global_step = tf.Variable(0, dtype=tf.int32, name="global_step")
# Increments the above `global_step` Variable, should be run whenever the graph is run
increment_step = global_step.assign_add(1)
# Variable that keeps track of previous output value:
previous_value = tf.Variable(0.0, dtype=tf.float32, name="previous_value")
# Primary transformation Operations
with tf.name_scope("exercise_transformation"):
# Separate input layer
with tf.name_scope("input"):
# Create input placeholder- takes in a Vector
a = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_a")
# Separate middle layer
with tf.name_scope("intermediate_layer"):
b = tf.reduce_prod(a, name="product_b")
c = tf.reduce_sum(a, name="sum_c")
# Separate output layer
with tf.name_scope("output"):
d = tf.add(b, c, name="add_d")
output = tf.subtract(d, previous_value, name="output")
update_prev = previous_value.assign(output)
# Summary Operations
with tf.name_scope("summaries"):
tf.summary.scalar('output', output) # Creates summary for output node
tf.summary.scalar('product of inputs', b, )
tf.summary.scalar('sum of inputs', c)
# Global Variables and Operations
with tf.name_scope("global_ops"):
# Initialization Op
init = tf.initialize_all_variables()
# Collect all summary Ops in graph
merged_summaries = tf.summary.merge_all()
# Start a Session, using the explicitly created Graph
sess = tf.Session(graph=graph)
# Open a SummaryWriter to save summaries
writer = tf.summary.FileWriter('./Graph', sess.graph)
# Initialize Variables
sess.run(init)
def run_graph(input_tensor):
"""
Helper function; runs the graph with given input tensor and saves summaries
"""
feed_dict = {a: input_tensor}
output, summary, step = sess.run([update_prev, merged_summaries, increment_step], feed_dict=feed_dict)
writer.add_summary(summary, global_step=step)
# Run the graph with various inputs
run_graph([2,8])
run_graph([3,1,3,3])
run_graph([8])
run_graph([1,2,3])
run_graph([11,4])
run_graph([4,1])
run_graph([7,3,1])
run_graph([6,3])
run_graph([0,2])
run_graph([4,5,6])
# Writes the summaries to disk
writer.flush()
# Flushes the summaries to disk and closes the SummaryWriter
writer.close()
# Close the session
sess.close()
# To start TensorBoard after running this file, execute the following command:
# $ tensorboard --logdir='./improved_graph'
I make use of google drive's back-up and sync https://www.google.com/drive/download/backup-and-sync/. The event files, which are prediodically saved in my google drive during training, are automatically synchronised to a folder on my own computer. Let's call this folder logs
. To access the visualizations in tensorboard I open the command prompt, navigate to the synchronized google drive folder, and type: tensorboard --logdir=logs
.
So, by automatically syncing my drive with my computer (using back-up and sync), I can use tensorboard as if I am training on my own computer.
Edit: Here is a notebook that might be helpful. https://colab.research.google.com/gist/MartijnCa/961c5f4c774930f4bdd32d51829da6f6/tensorboard-with-google-drive-backup-and-sync.ipynb